

ExoPlaSim Python API Documentation

[image: Two rows of planets, progressing from yellow to blue from top left to bottom right. The top row appears to represent tidally-locked planets, while the bottom row appears to represent Earth-like planets.]

A range of planets modeled by ExoPlaSim, and postprocessed with SBDART. The top row consists of tidally-locked aquaplanets at T21 orbiting stars ranging from 2500 K to 4000 K, with orbital periods increasing with stellar mass. The bottom row consists of aquaplanets with 24-hour rotation at T42, orbiting stars ranging from 4000 K to 8000 K.

	Index

	Tutorial

	Postprocessor

	Search Page

Contents

	ExoPlaSim Tutorial
	Setting Up
	Configuring the model for TOI-700d

	Running the Model

	Inspecting the Data

	A Shortcut for TOI 700 d

	Postprocessing ExoPlaSim Outputs
	The Basics: Formats, Variables, and Math
	Format

	Variables

	Postprocessing Math

	Reading Postprocessed Files

	Postprocessor Variable Codes

	Burn7 Postprocessor Options

	exoplasim package
	Module contents

	Submodules

	exoplasim.gcmt module

	exoplasim.pyburn module

	exoplasim.randomcontinents module

	exoplasim.makestellarspec module

	exoplasim.pRT module

Created by Adiv Paradise

Copyright 2020, Distributed under the General Public License.

This API was written with Python 3 in mind, but should work with
Python 2 and outdated versions of NumPy.

Requirements

	Python (including development libraries, e.g. python-dev or python3.9-dev on Ubuntu–if using anaconda, these should already be included in your installation)

	numpy

	scipy (only needed for additional utilities, postprocessor)

	matplotlib (only needed for additional utilities)

	GNU C (gcc/g++) and Fortran (gfortran) compilers (development headers must be present)

	(optionally) Other compilers whose use you prefer for the model itself

	(optionally) MPI libraries for those compilers

Compatibility

	Linux (tested on Ubuntu 18.04, CentOS 6.10): Yes

	Google Colaboratory: Yes (note that OpenMPI support on Colaboratory is limited due to automatic root privileges; look up how to run OpenMPI executables with root permissions and note that this is not recommended)

	Windows 10: Yes, via Windows Subsystem for Linux

	Mac OS X: Yes, requires Xcode and developer tools, and OpenMPI support requires that Fortran-compatible libraries be built. [https://www.open-mpi.org/faq/?category=osx#not-using-osx-bundled-ompi] Tested on Mac OS X Catalina and Big Sur (with MacPorts, GCC10, OpenMPI, and Anaconda3), Apple M1 compatibility has not been tested.

Optional Requirements

	netCDF4 (for netCDF support)

	h5py (for HDF5 support)

New in 3.3:

	New aerosol module for transport and gravitational settling of dust and photochemical hazes

New in 3.2:

	Experimental integration with petitRADTRANS to compute transit spectra and reflectance spectra, including maps and true-colour images (use at your own risk)

	Ability to specify general keplerian orbits, with high eccentricity, using a revamped orbit code for higher accuracy

	Orbital elements now included in standard output

	Numerous bugfixes

New in 3.0:

	ExoPlaSim no longer depends on X11 libraries for installation and compilation!

	Revamped postprocessor no longer depends on NetCDF-C libraries, and supports additional output formats (including netCDF, HDF5, NumPy archives, and archives of CSV files).

	GCC and gfortran support through GCC 10.

	Improved cross-platform compatibility

	Numerous bugfixes

Installation

pip install exoplasim

OR:

python setup.py install

If you know you will want to use NetCDF or HDF5 output formats,
you can install their dependencies at install-time:

pip install exoplasim[HDF5]

OR:

pip install exoplasim[netCDF4]

OR:

pip install exoplasim[netCDF4,HDF5]

The first time you import the module and try to create a model
after either installing or updating, ExoPlaSim will run a
configuration script, write the install directory into its
source code, and compile the pyfft library.

NEW in 3.2.2: If you need to re-run the configuration, because
for example the system libraries/compilers have changed, or the
configuration failed the first time (usually because OpenMPI
was not properly configured/visible, and/or numpy’s f2py utility
was not properly available), then you can call sysconfigure()
to rerun the configuration script.

You may also configure and compile the model manually if you wish
to not use the Python API, by entering the exoplasim/ directory
and running first configure.sh, then compile.sh (compilation flags
are shown by running ./compile.sh -h).

Most Common Error Modes

There are 3 major ways in which ExoPlaSim can crash. One is related
to installation, one is related to model compilation/configuration,
and one is related to numerical stability.

If in the run folder, diagnostic files are produced that appear to have
made it all the way to the end of the year (there is a summary tag
giving time elapsed and that sort of thing), then the problem is likely
with the postprocessor. It is likely that the error output will be informative;
if it is not clear how to resolve, please let me (the developer) know.

If the postprocessor itself is not the problem, then it’s likely you somehow passed
incorrect output codes to the postprocessor. This is the most common scenario for
postprocessor-related crashes. Check your inputs for any errors. In particular, note
that climatology outputs are not available if storm climatology was not enabled.

If things crashed and burned immediately, it’s likely a configuration
problem. There are two kinds of configuration problems that can commonly
cause problems: a problem with how system libraries are configured,
or a problem with how your model is configured.

If it appears that a file is missing or a command can’t be found:

This usually means a system library such as the Fortran compiler,
OpenMPI compiler, or numpy’s f2py utility is either not installed,
incorrectly installed, or not visible to ExoPlaSim. To verify, you can
run exoplasim.printsysconfig(ncpus=1) and exoplasim.printsysconfig(ncpus=2).
These commands (new in 3.2.2) print the contents of the single-core
and parallel executation configuration files, and additionally return their
contents as a python dictionary. There should not be any empty settings.

If something appears missing such as an MPI or Fortran compiler, and you
believe it’s installed, you can check by running e.g. mpifort --help
or gfortran --help. Additionally, for pyfft problems, verify that numpy’s
f2py utility is available by running f2py -h or f2py3 -h. If any of these
fails but the library in question is installed, that suggests it is not in
the system path (the list of directories where programs may look for libraries
and executables). Ensure all libraries are properly installed, configured,
and on the path, then run sysconfigure() to reconfigure ExoPlaSim.

If it appears that the model has actually crashed:

Check to make sure you aren’t using a restart file from a run
that used a different resolution, or stellar spectrum files that aren’t
formatted correctly (use the makestellarspec
utility to format Phoenix spectra for ExoPlaSim), or boundary condition
.sra files that aren’t properly-formatted.

If things were fine until they weren’t, then it’s likely ExoPlaSim encountered
a numerical instability of some kind. Some of these are physical (e.g. you ran
a model at a thousand times Earth’s insolation, and the oceans boiled, or the model
was too cold and the physics broke), while some are not (something happened to
violate the CFL condition for the given timestep, or an unphysical oscillation
wasn’t damped properly by the dynamical core and it grew exponentially). If this
happens, either try a model configuration that is more physically reasonable,
or if the problem appears not to have been physical, try reducing the timestep
or increasing hyperdiffusion. Sometimes it also works to slightly adjust a model
parameter such as surface pressure by a fraction of a percent or less–just enough
to nudge the model out of whatever chaotic local minimum it ran into, but not
enough to qualitatively change the resulting climate.

New in ExoPlaSim 3.0.0, there is a “crash-tolerant” run mode. With this mode enabled,
a runtime crash will result in rewinding 10 years and resuming. This deals with many
of the most frustrating problems related to numerical instability. However, due to
the potential for infinite loops, this is only recommended for advanced users.

PlaSim Documentation

Original PlaSim documentation is available in the exoplasim/docs/
folder.

Usage

To use the ExoPlaSim Python API, you must import the module, create
a Model or one of its subclasses, call its configure method and/or
modify method, and then run it.

An IPython notebook is included with ExoPlaSim; which demonstrates
basic usage. It can be found in the ExoPlaSim installation directory,
or downloaded directly here. [https://raw.githubusercontent.com/alphaparrot/ExoPlaSim/master/exoplasim/exoplasim_tutorial.ipynb]

Basic example::

import exoplasim as exo
mymodel = exo.Model(workdir="mymodel_testrun",modelname="mymodel",resolution="T21",layers=10,ncpus=8)
mymodel.configure()
mymodel.exportcfg()
mymodel.run(years=100,crashifbroken=True)
mymodel.finalize("mymodel_output")

In this example, we initialize a model that will run in the directory
“mymodel_testrun”, and has the name “mymodel”, which will be used to
label output and error logs. The model has T21 resolution, or 32x64,
10 layers, and will run on 8 CPUs. By default, the compiler will use
8-byte precision. 4-byte may run slightly faster, but possibly at the
cost of reduced stability. If there are machine-specific optimization
flags you would like to use when compiling, you may specify them as a
string to the optimization argument, e.g. optimization='mavx'. ExoPlaSim
will check to see if an appropriate executable has already been created,
and if not (or if flags indicating special compiler behavior such as
debug=True or an optimization flag are set) it will compile one. We then
configure the model with all the default parameter choices, which means
we will get a model of Earth. We then export the model configurations
to a .cfg file (named automatically after the model), which will allow
the model configuration to be recreated exactly by other users. We
run the model for 100 years, with error-handling enabled. Finally, we
tell the model to clean up after itself. It will take the most recent
output files and rename them after the model name we chose, and delete
all the intermediate output and configuration files.

A Note on NetCDF and the (deprecated) Burn7 Postprocessor

As of ExoPlaSim 3.0.0, burn7 is deprecated. It is only
available via the exoplasim-legacy package.

ExoPlaSim Tutorial

In this tutorial, we will model the habitable zone terrestrial planet TOI 700 d, and take a look at some of the data. This tutorial assumes that you have installed ExoPlaSim successfully, and have matplotlib installed.

Additionally to this tutorial, an IPython notebook is included with ExoPlaSim; which demonstrates
basic usage. It can be found in the ExoPlaSim installation directory,
or downloaded directly here. [https://raw.githubusercontent.com/alphaparrot/ExoPlaSim/master/exoplasim/exoplasim_tutorial.ipynb]

Setting Up

First thing’s first: we want to import ExoPlaSim, and instantiate our Model instance. We want to create our model run in the folder “toi700d_run”, and run it at T21 resolution on 4 CPUs. We tell ExoPlaSim to use NumPy’s compressed archive format for postprocessed output. Note that
a large number of output formats are supported, including netCDF and HDF5, but those two formats require
the additional installation of the netCDF4 and h5py Python libraries (which can be done at
install-time as optional dependencies for ExoPlaSim).

>>> import exoplasim as exo
>>> toi700d = exo.Model(workdir="toi700d_run",modelname="TOI-700d",
>>> ncpus=4,resolution="T21",outputtype=".npz")

If the appropriate executable does not yet exist, it will be compiled now. If this is the first time an ExoPlaSim model has been created, then a configuration script will be run first to locate the necessary compilers. We assign the model a descriptive name through the modelname argument, which is not strictly necessary, but will prove useful later.

Configuring the model for TOI-700d

TOI 700 d was discovered by the TESS telescope in January 2020 (Gilbert, et al 2020) [https://ui.adsabs.harvard.edu/link_gateway/2020AJ....160..116G/doi:10.3847/1538-3881/aba4b2]. It orbits TOI 700, a 3480 K M2V dwarf just over 100 lightyears away. TOI 700 has a luminosity of \(0.0233\pm0.0011\) L\(_\odot\), and is relatively quiet. TOI 700 d has the following parameters:

	Radius

	\(1.19\pm0.11\) R\(_\oplus\)

	Mass

	\(1.72^{+1.29}_{-0.63}\) M\(_\oplus\)

	Period

	\(37.4260^{+0.0007}_{-0.0010}\) days

	Semi-major Axis

	\(0.163^{+0.0026}_{-0.0027}\) AU

	Incident Flux

	\(1367\) W/m\(^2\left(\frac{L}{a^2}\right)\approx1199\) W/m\(^2\)

	Surface Gravity

	\(9.81\) m/s\(^2\left(\frac{M}{R^2}\right)\approx11.9\) m/s\(^2\)

We don’t know anything else about the planet, so we’ll have to make some assumptions about the atmosphere and surface. For simplicity, we’ll assume that the surface is entirely ocean-covered, and that the atmospheric mass scales with planetary mass. We’ll also assume that the atmosphere is N2, CO2, and H2 O. The surface pressure relative to Earth can therefore be estimated as follows:

\[p_s \approx \frac{g}{g_\oplus}\left(\frac{M}{M_\oplus}\right)\left(\frac{R_\oplus}{R}\right)^2\]

This gives a surface pressure of approximately 1.47 bars. With that figured out, we can proceed to configure the model (right now it is configured with the barest of defaults–you should always configure the model, even if you pass no non-default arguments).

>>> toi700d.configure(startemp=3480.0, flux=1167.0, # Stellar parameters
>>> eccentricity=0.,obliquity=0.,fixedorbit=True, # Orbital parameters
>>> synchronous=True,rotationperiod=37.426, # Rotation
>>> radius=1.19,gravity=11.9,aquaplanet=True, # Bulk properties
>>> pN2=1.47*(1-360e-6),pCO2=1.47*360e-6,ozone=False, # Atmosphere
>>> timestep=30.0,snapshots=720,physicsfilter="gp|exp|sp") # Model dynamics
>>> toi700d.exportcfg()

This command edits all the namelists and boundary condition files appropriately. The exportcfg() command writes a portable text configuration file, by default named TOI-700d.cfg using the model’s modelname parameter, that another user could use to replicate our model by simply running toi700d.loadconfig("TOI-700d.cfg").For a full description of the parameters we could have passed, see exoplasim.Model.configure(). Here is a brief overview of what each parameter did:

	startemp = 3480.0
	Specified the effective blackbody temperature of the star–in this case, 3480 K.

	flux = 1167.0
	Specified the incident flux (insolation or instellation) at the planet: 1167 W/m\(^2\)

	eccentricity = 0.0
	We set the orbital eccentricity to 0.

	obliquity = 0.0
	We set the planet’s axial tilt to 0.

	fixedorbit = True
	Here, we don’t want the orbit precessing or anything, so we keep our orbit fixed.

	synchronous = True,
	By setting this flag, we have told ExoPlaSim that this is a tidally-locked model. The default is for the Sun to be fixed in place over 180° longitude.

	rotationperiod = 37.426
	Since the planet is tidally-locked, we assume its rotation period matches its orbital period, 37.426 days.

	radius = 1.19
	We set the planet’s radius to 1.19 Earth radii.

	gravity = 11.9
	We set the surface gravity to 11.9 m/s\(^2\). Note that we do not specify the planet’s mass directly, only the radius and surface gravity.

	aquaplanet = True
	Setting this flag deletes all surface boundary condition files and tells ExoPlaSim to initialize an ocean everywhere. The default is to have a mixed-layer depth of 50 meters.

	pN2 = 1.47*(1-360e-6)
	We want 1.47 bars total, but we want to include CO2 as well. The surface pressure is the sum of the partial pressures, so we reduce pN2 by the amount of CO2 we want, the TOI 700 d equivalent of 360 \(\mu\)bars. We could also skip the 1.47 scaling and set the pressure directly through its own argument.

	pCO2 = 1.47*360e-6
	We set the CO2 partial pressure to its Earth level in bars, scaled up.

	ozone = False
	Since we are not assuming an oxygenated atmosphere (and some studies dispute how much ozone could be produced from an oxygenated atmosphere around an M dwarf anyway), we assume there will be no forcing from ozone. Tidally-locked models in ExoPlaSim are more stable without ozone anyway.

	timestep = 30.0
	Tidally-locked climates are stlightly more extreme than Earth-like climates, so rather than the default 45-minute timestep, we use 30 minutes.

	snapshots = 720
	Here we tell ExoPlaSim to write snapshot outputs every 720 timesteps (15 days). These snapshots show us the climate at a particular instant in time, and are therefore necessary for any observational postprocessing (any time-integrated observation is an average of photons that passed through the atmosphere as it was for a brief moment, not through the time-averaged atmosphere–this is mainly important for clouds). It’s usually a good idea to write a snapshot every 15 days (twice a month), so scale based on the timestep. The default is to write every 480 timesteps, which is 15 days when a timestep is 15 minutes.

	physicsfilter = “gp|exp|sp”
	Tidally-locked models can be subject to large-scale Gibbs oscillations on the night side, due to the strong dipole moment of the forcing and axial symmetry of the iceline. All models will struggle to reproduce sharp features accurately. ExoPlaSim merely struggles in an extremely visible way. Fortunately, we can mitigate this to an acceptable level with the use of physics filters. These are mathematical filters included in the dynamical core at the spectral transform stage. Here we have told ExoPlaSim to use an exponential filter, and to apply it both at the transform from gridpoint space to spectral space, and at the transform from spectral space back to gridpoint space. For more details on the choice of filter and how they work, see exoplasim.Model.configure(). For Earth-like models that aren’t tidally-locked, physics filters are usually not necessary.

Running the Model

Now that we have configured the model, it’s time to run it! This demo is intended to be something you can run on your laptop (thus specifying only 4 CPUs), so to make sure you have something to look at when you come back from your lunch break, let’s just run for 10 years. On my laptop with 4 cores, a year takes just over 6 minutes. Note that on HPC architecture with 16 cores, a year often takes less than a minute.

>>> toi700d.run(years=10,crashifbroken=True)

The crashifbroken flag simply means that if something goes wrong, the model will crash in a slightly cleaner, Pythonic way. Note that a problem with the postprocessor will get flagged as a crash just like an actual model crash–in most cases, the model is salvageable if you figure out what went wrong with the postprocessor.

Inspecting the Data

If all went well on that previous step, you should now have a bunch of NetCDF files sitting in the model’s working directory. You can now open and analyze those as you wish. However, ExoPlaSim’s Python API does provide some data inspection tools. Let’s take a look at some of them. First, we’ll plot the surface temperature, using matplotlib [https://matplotlib.org/api/pyplot_api.html].

>>> import matplotlib.pyplot as plt
>>> lon = toi700d.inspect("lon")
>>> lat = toi700d.inspect("lat")
>>> ts = toi700d.inspect("ts",tavg=True)
>>> im=plt.pcolormesh(lon,lat,ts,cmap="RdBu_r",vmin=273.15-60.0,vmax=273.15+60.0,shading="Gouraud")
>>> plt.contour(lon,lat,ts,[273.15,],colors=['gray',])
>>> plt.colorbar(im,label="Surface Temperature [K]")
>>> plt.xlabel("Longitude [deg]")
>>> plt.ylabel("Latitude [deg]")
>>> plt.title("TOI 700 d Surface Temperature")
>>> plt.show()

[image: A 2D surface temperature map, showing a warm dayside, cold night-side, and the zero-degree contour near the edge of the day-side.]
Neat! That does look like a tidally-locked planet. Note that when we requested the surface temperature, we specified tavg=True, but nothing else besides the variable name. That told ExoPlaSim that we wanted a time average, and because we didn’t specify otherwise, it gave us the time average of the final year of output. If we hadn’t set tavg, we would have gotten a 3-dimensional array, with the first dimension being time. If we wanted say the third year, we could have specified year=2 (remember how Python indexing works). If we wanted to look at 3 years before the model finished, we could use year=-3. For more information, refer to the documentation for inspect.

How about something a bit more complex–say a 3-dimensional field, like wind? Airflow in ExoPlaSim is represented by 3 different fields: ua for zonal wind, va for meridional wind, and wa for vertical wind. In most climates you’ll model with ExoPlaSim, wind is almost entirely horizontal, so we’ll ignore wa for now. To get the overall wind speed, we’ll need to combine ua and va:

>>> import numpy as np
>>> ua = toi700d.inspect("ua",layer=5)
>>> va = toi700d.inspect("va",layer=5)
>>> speed = np.nanmean(np.sqrt(ua**2+va**2), axis=0)
>>> ua = np.nanmean(ua, axis=0)
>>> va = np.nanmean(va, axis=0)

Note that here we do the time-averaging after we do math on the variables–the function of an average is not always the average of the function. We’ve also now specified a layer argument, which extracts a particular vertical layer from a data field that has 3 spatial dimensions. Our model has 10 layers, so we extracted one of the middle layers, to show us the mid-altitude winds.

>>> from scipy.interpolate import interp2d
>>> ylat = np.linspace(lat.min(),lat.max(),lat.size) #ExoPlaSim latitudes are not evenly-spaced
>>> ux = interp2d(lon, lat, ua)(lon, ylat)
>>> vx = interp2d(lon, lat, va)(lon, ylat)
>>> speedx = interp2d(lon, lat, speed)(lon,ylat)

Here we’ve interpolated our windspeeds onto a new grid with an evenly-spaced y-axis–we have to do this because latitudes in ExoPlaSim are not evenly-spaced, and matplotlib’s streamplot [https://matplotlib.org/3.3.3/api/_as_gen/matplotlib.pyplot.streamplot.html] routine requires an evenly-spaced grid.

>>> linewidth = 3*speedx / speedx.max()
>>> plt.streamplot(lon,ylat,ux,vx, density = 2, color='k', linewidth=linewidth)
>>> plt.contour(lon,lat,ts,[273.15,],colors=['r',])
>>> plt.xlabel("Longitude [deg]")
>>> plt.ylabel("Latitude [deg]")
>>> plt.title("TOI 700 d Mid-Atmosphere Streamlines")
>>> plt.show()

[image: A 2D map of streamlines, showing large night-side mid-altitude gyres, and complex flow at the substellar point.]
We can pretty clearly see here the night-side gyres, and the complex inflow-outflow behavior at the substellar point.

We’ve looked up until now only at the current year. What if we wanted to see how, say, the mean top-of-atmosphere energy balance evolved with each model year?

The Model.gethistory routine provides the functionality we need. It will return an array of global annual averages for a given variable, for each simulated year:

>>> energybalance = toi700d.gethistory(key="ntr")
>>> plt.plot(energybalance)
>>> plt.xlabel("Model Year")
>>> plt.ylabel("TOA Annual Mean Net Radiation")
>>> plt.title("TOI 700 d Energy Balance")
>>> plt.show()

[image: A plot of top-of-atmosphere net radiation, converging towards zero but not quite getting there.]
You’ll notice here that we’re not quite in equilibrium yet. That’s because we only ran 10 years. Typically, reaching a strict energy balance equilibrium takes many decades, and sometimes up to a few centuries depending on how different the equilibrium is from the initial conditions. For a routine that will automatically run until an energy balance criterion is reached, see Model.runtobalance.

Sometimes it can be helpful to examine 3D data in a plane other than latitude-longitude. For this, the exoplasim.gcmt module can be useful. Here, for example, we examine meridional average vertical wind, and zonal average wind:

>>> import exoplasim.gcmt as gcmt
>>> wa = toi700d.inspect("wa")
>>> ua = toi700d.inspect("ua")
>>> wa = gcmt.make2d(wa,lat="mean")
>>> ua = gcmt.make2d(ua,lon="mean")

The make2d function attempts to reduce an input variable to 2 dimensions. If you specify that a particular dimension (lat, lon, lev) should be averaged ("mean") or summed ("sum"), the function will first attempt to reduce along that dimension. If not enough dimensions are specified, or a time slice is not given, the default is to return a time-average. Note that when an average or sum is computed, the different sizes of grid cells is taken into account.

For the vertical axis, it may be useful to have pressure levels.

>>> sigma = toi700d.inspect("lev")
>>> psurf = toi700d.inspect("ps")
>>> pAir = sigma[np.newaxis,:,np.newaxis,np.newaxis] * psurf[:,np.newaxis,:,:]
>>> pmerid = gcmt.make2d(pAir,lat="mean")
>>> pzonal = gcmt.make2d(pAir,lon="mean")

We now have a 2D array of mid-layer pressures for each of our plots, in units of hPa.

>>> fig,ax = plt.subplots(1,2,figsize=(10,5),sharey=True)
>>> im1 = ax[0].pcolormesh(lon,pmerid,wa,cmap='PuOr',shading='Gouraud',vmin=-0.02,vmax=0.02)
>>> plt.colorbar(im1,label="Vertical Wind [m/s]",ax=ax[0])
>>> im2 = ax[1].pcolormesh(lat,pzonal,ua,cmap='RdBu_r',shading='Gouraud',vmin=-20,vmax=20)
>>> plt.colorbar(im2,label="Zonal Wind [m/s]",ax=ax[1])
>>> ax[0].invert_yaxis()
>>> ax[0].set_xlabel("Longitude [deg]")
>>> ax[0].set_ylabel("Pressure [hPa]")
>>> ax[1].set_xlabel("Latitude [deg]")
>>> ax[0].set_title("Vertical Wind")
>>> ax[1].set_title("Zonal Wind")
>>> fig.suptitle("TOI 700 d Vertical Structure")
>>> plt.show()

[image: Two plots, showing vertical wind on the left, and zonal wind on the right. There is strong upwelling at the substellar point, and a high-altitude equatorial zonal jet.]
Similarly, we can use the averaging features built into the inspect function to extract vertical profiles:

>>> ps = toi700d.inspect("ps",savg=True,tavg=True)
>>> pa = ps*sigma
>>> tprofile = toi700d.inspect("ta",savg=True,tavg=True) # Mid-layer air temperature [K]
>>> qprofile = toi700d.inspect("hus",savg=True,tavg=True) # Mid-layer specific humidity [kg/kg]

Here, we leverage the savg flag to return global means. When the field we want has 3 spatial dimensions, the vertical dimension is preserved, returning an array of the horizontal global mean in each model layer.

>>> fig,ax = plt.subplots(1,2,figsize=(10,5),sharey=True)
>>> ax[0].plot(tprofile,pa)
>>> ax[1].plot(qprofile,pa)
>>> ax[1].set_xscale('log')
>>> ax[0].invert_yaxis()
>>> ax[0].set_xlabel("Air Temperature [K]")
>>> ax[0].set_ylabel("Pressure [hPa]")
>>> ax[1].set_xlabel("Specific Humidity [kg/kg]")
>>> ax[0].set_title("T-P Profile")
>>> ax[1].set_title("Q-P Profile")
>>> fig.suptitle("TOI 700 d Vertical Profiles")
>>> plt.show()

[image: Two plots showing the global-averaged vertical temperature and humidity profiles. On average, there is a near-surface temperature inversion, and humidity that declines with altitude.]
And of course, it might be nice to see what this planet might look like in reflected light.

>>> reflected = toi700d.inspect("rsut",snapshot=True)
>>> im = plt.pcolormesh(lon,lat,reflected[-1],cmap='Blues',shading='Gouraud')
>>> plt.colorbar(im,label="TOA Reflected Light [W/m2]")
>>> plt.xlabel("Longitude [deg]")
>>> plt.ylabel("Latitude [deg]")
>>> plt.title("TOI 700 d Top-of-Atmosphere Reflection")
>>> plt.show()

[image: A plot of top-of-atmosphere reflected light. The day side is mostly-cloudy, but the iceline is visible.]
The snapshot flag tells exoplasim to pull from the snapshot outputs instead of the time-averaged outputs. This returns an array with many different instances, so we need to specify which one we want. In the plotting command, we select the most recent snapshot that was written.

Finally, to move everything to an output directory:

>>> toi700d.finalize("TOI-700d",allyears=True,keeprestarts=True)
>>> toi700d.save() #So we can reload the Model object for data inspection at a later date

This will move output files, diagnostic files, and restart files to the folder “TOI-700d”, delete the run folder (set clean=False to avoid this), and then save the Model instance to a NumPy save file, from which it can be reloaded at a later date for further data inspection:

>>> import numpy as np
>>> toi700d = np.load("TOI-700d/TOI-700d.npy",allow_pickle=True).item()

Note that NumPy save files are generally not portable when they’ve been pickled. If you want to enable somebody else to run your model, give them TOI-700d.cfg instead.

A Shortcut for TOI 700 d

Setting up TOI 700 d involved setting several parameters that are probably always going to be set for tidally-locked models. That could get a little repetitive if you set up many models by hand. Fortunately, ExoPlaSim provides a sub-class that would have made configuration much shorter: the exoplasim.TLaquaplanet class, along with exoplasim.TLlandplanet and exoplasim.TLmodel. Using TLaquaplanet, we would have done the following:

>>> import exoplasim as exo
>>> toi700d = exo.TLaquaplanet(workdir="toi700d_run",modelname="TOI-700d",ncpus=4,resolution="T21")
>>> toi700d.configure(startemp=3480.0, flux=1167.0, # Stellar parameters
>>> rotationperiod=37.426, # Rotation
>>> radius=1.19,gravity=11.9, # Bulk properties
>>> pN2=1.47*(1-360e-6),pCO2=1.47*360e-6) # Atmosphere
>>> toi700d.exportcfg()

All the other parameters we had specified, like the timestep, aquaplanet mode, physics filter, circular orbit, etc are the defaults for a tidally-locked model. Furthermore, there is only one configuration file format–so when you share the configuration file, it can be loaded by any Model instance. A similar class exists for tidally-locked land planets, as well as a generic tidally-locked class that does not specify surface type.

And of course, there is an exoplasim.Earthlike class, which sets the usual defaults for a planet with more Earth-like rotation, but which for example might have a slightly different surface pressure.

Postprocessing ExoPlaSim Outputs

The Basics: Formats, Variables, and Math

As of ExoPlaSim 3.0.0, postprocessing can be done using the exoplasim.pyburn
module. This module exposes an API for setting the variables to be included in postprocessed output,
the horizontal mode in which to present them, and any additional math that should be performed, including
coordinate transformations, time-averaging, and standard deviations. pyburn also supports a large
range of output formats: netCDF, HDF5, NumPy’s compressed .npz archives (the default), and plain-text
comma-separated value (CSV) files. The latter can be compressed individually with the gzip format,
tarballed, or tarballed and compressed (in the latter case with gzip, lzma, or bzip2
compression types). Producing netCDF files requires that the netCDF4 python library be present (you
can install it with pip install netCDF4 or at ExoPlaSim’s install-time with pip install exoplasim[netCDF4]). Similarly, producing HDF5 files requires the presence of the h5py Python
library, which can be installed via pip install h5py or, at ExoPlaSim’s install time, with
pip install exoplasim[HDF5]. Support for both netCDF and HDF5 can be guaranteed at install-time
by combining them:

pip install exoplasim[netCDF4,HDF5]

Format

The choice of output format can be specified either when the postprocessor is called (if being used
manually), or as an argument to a Model object, by simply providing the
file extension:

	Format

	Supported Extensions

	NumPy (default)

	.npz

	.npy

	netCDF

	.nc

	HDF5

	.h5

	.he5

	.hdf5

	Compressed CSV

	.gz

	.tar.gz

	.tar.xz

	.tar.bz2

	Uncompressed CSV

	.csv

	.txt

	.tar

Because the NumPy archive format does not support additional metadata arrays, metadata is stored
separately in a file using the _metadata.npz suffix. This file is typically a few tens of kiB.

CSV-type files will only contain 2D variable information, so the first N-1 dimensions will be flattened.
The original variable shape is included in the file header (prepended with a # character) as the first
items in a comma-separated list, with the first non-dimension item given as the ‘|||’ placeholder. On
reading variables from these files, they should be reshaped according to these dimensions. This is true
even in tarballs (which contain CSV files). If read in by gcmt.load(),
this reshaping will be done automatically.

Note that when using the pyburn.postprocess() function
directly, a single file must be specified as the output file. This is true even for formats
that produce a large number of files that don’t get bound up together, such as .gz and .csv,
which produce a folder containing one file per variable. The file you specify should have the pattern
<subdirectory>.<extension>. This file will not actually be created, but it will be parsed to
determine the desired output format. So, for example, to create an archive consisting of a folder full
of CSV files for the raw output file MOST.00127, one would use MOST.00127.csv. The surface
temperature variable, ts, would then be found in MOST.00127/MOST.00127_ts.csv.
This same combined-format fictional filestring can be passed to
gcmt.load(). The object returned by that function will access the
data in the archive just as if it were a bound archive, such as a tarball, netCDF file, or HDF5 file.

A T21 model output with 10 vertical levels, 12 output times, all supported variables in grid
mode,and no standard deviation computation will have the following sizes for each format:

	Format

	Size

	netCDF

	12.8 MiB

	HDF5

	17.2 MiB

	NumPy (default)

	19.3 MiB

	tar.xz

	33.6 MiB

	tar.bz2

	36.8 MiB

	gzipped

	45.9 MiB

	uncompressed

	160.2 MiB

Variables

Output variables can be chosen in multiple ways. Either a burn7-style namelist can be provided,
containing a list of numeric variables codes (listed below), or a list can be passed directly, containing
a list of numeri codes, a list of strings of numeric codes, or a list of string variable keys, as
indicated in the leftmost-column of the table below.

Variable lists can be specified once for all outputs of a given type (‘regular’, ‘snapshot’, or
‘highcadence’), with Model.cfgpostprocessor(), or
for each model year with Model.postprocess(), or manually
outside of the ExoPlaSim Model object, with
pyburn.postprocess.

Optionally, as advanced usage, a dictionary can be passed, with one member per variable (using the same
identification rules given above), and pyburn.dataset()
keyword arguments specified for each variable. For example, to create an output file with two variables,
surface temperature and streamfunction, both on a horizontal grid, and the streamfunction
zonally-averaged and passed through physics filters:

{"ts":{"mode":"grid","zonal":False},
 "stf":{"mode":"grid","zonal":True,"physfilter":True}}

This can be specified in one of 3 ways. Either it can be set for all outputs of a given type
(‘regular’, ‘snapshot’, or ‘highcadence’) as a Model property:

>>> myModel.cfgpostprocessor(ftype="regular",extension=".nc",
>>> variables={"ts":{"mode":"grid","zonal":False},
>>> "stf":{"mode":"grid","zonal":True,"physfilter":True}})

Or it can be set each time Model.postprocess() is called:

>>> myModel.postprocess("MOST.00127",
>>> {"ts":{"mode":"grid","zonal":False},
>>> "stf":{"mode":"grid","zonal":True,"physfilter":True}},
>>> log="burnlog.00127",crashifbroken=True)

Or, finally, it can be specified directly to
pyburn.postprocess():

>>> pyburn.postprocess("MOST.00127","MOST.00127.nc",logfile="burnlog.00127",
>>> variables={"ts":{"mode":"grid","zonal":False},
>>> "stf":{"mode":"grid","zonal":True,"physfilter":True}})

Postprocessing Math

pyburn provides the ability to perform various mathematical operations on the data as part of
the postprocessing step.

Multiple horizontal modes are available (specified with the mode keyword), including a
Gaussian-spaced latitude-longitude grid ("grid"), spherical harmonics ("spectral"),
Fourier coefficients for each latitude ("fourier"), a latitude-longitude grid rotated such that the
“North” pole is at the substellar point of a sychronously-rotating planet, and the “equator” is the
terminator ("synchronous"), and Fourier coefficients computed along lines of constant longitude
(including the mirror component on the opposite hemisphere) in that rotated coordinate system
("syncfourier"). Additionally, for output modes with discrete latitudes, variables can be
zonally-averaged (zonal=True).

ExoPlaSim performs some time-averaging on the fly (for “regular”-type outputs) to avoid overloading
I/O buffers and creating enormous raw output files, but the number of output times is still often
going to be more than you prefer for the postprocessed output data. The default configuration,
for example, produces 72 output timestamps per year. pyburn can perform time-averaging to reduce
this to e.g. monthly output, via the times keyword and the timeaveraging keyword. The former
specifies either the number of output times or the specific output times requested (as decimal fractions
of a model output’s timeseries), while the latter is a boolean True/False flag. If specific output times
are requested or the number of requested outputs doesn’t divide cleanly into the number of timestamps
in the raw output, pyburn can interpolate between timestamps using linear interpolation. No
extrapolation is performed, so you cannot request a time between e.g. the last output of the previous
year and the first output of the current year. Whether or not linear interpolation is used or
“nearest-neighbor” interpolation (which simply selects the timestamp closest to the target time) can
be set with the interpolatetimes keyword–if True–linear interpolation will be used when
necessary. The minimum number of timestamps in the output file is 1; this corresponds to computing an
annual average.

Finally, pyburn brings the ability to compute the standard deviations of ExoPlaSim variables.
Enabling this with stdev=True will compute the standard deviation in one of two ways, depending
on whether time-averaging is being used. If time averages are being computed, then a standard deviation
will be computed alongside each average, and the each standard deviation variable (denoted with the
_std suffix in the variable name, e.g. ts_std for the standard deviation of surface temperature)
will have the same number of timestamps as the time-averages. If time-averages are not being
computed, then the standard deviation of the entire file’s timeseries will be computed, and there will
be one timestamp per standard deviation variable.

Reading Postprocessed Files

While postprocessed files are portable and can be read however you like, ExoPlaSim also provides a
native, format-agnostic way to access them via the gcmt.load()
function. This takes the archive filename as its argument, and returns an object analogous to an
open netCDF file object. It has two members of interest to the user: variables and metadata.
Both are compatible with all dictionary methods, and individual variables’ data can be extracted by
using the variable name as the dictionary key. For example:

>>> import exoplasim.gcmt as gcmt
>>> myData = gcmt.load("MOST.0127.tar.gz")
>>> surfacetemperature = myData.variables['ts']
>>> surftemp_metadata = myData.metadata['ts']

Note that for CSV-type formats, like the tarball given above, the file is left compressed (except
during the initial read), and the whole dataset is not loaded into memory. Dimension arrays,
such as latitude, longitude, etc, are loaded, as is all metadata. By default, however, only one
data array will be loaded into memory. This can be expanded with the csvbuffersize keyword,
which takes the number of variables to permit to hold in the memory buffer. This buffer uses a
first-in, first-out approach, so if a new variable is requested and the buffer is full, the loaded
variable which was used the least recently will be purged from memory.

Postprocessor Variable Codes

Note that in addition to the variable codes listed below, if pyburn is used with stdev=True,
there will also be variables that correspond to those listed below, with the _std suffix. If
time-averaging was performed during postprocessing, the standard deviation will be the standard deviation
for each averaged time period, and there will be the same number of timestamps for the _std variables
as for their nominal data counterparts. If time-averaging was not used, then each standard deviation
variable will have only one timestamp, corresponding to the standard deviation throughout the entire
timeseries present in the file.

	Variable

	Code

	Description

	Units

	Notes

	nu

	50

	orbital true anomaly

	deg

	

	lambda

	51

	solar ecliptic longitude

	deg

	

	zdec

	52

	solar declination angle

	deg

	

	rdist

	53

	planet-star distance modulus

	nondimensional

	

	mld

	110

	mixed layer depth

	m

	

	sg

	129

	surface geopotential

	m2 s-2

	

	ta

	130

	air temperature

	K

	

	ua

	131

	eastward wind

	m s-1

	

	va

	132

	northward wind

	m s-1

	

	hus

	133

	specific humidity

	kg/kg

	

	ps

	134

	surface air pressure

	hPa

	

	wap

	135

	vertical air velocity

	Pa s-1

	

	wa

	137

	upward wind

	m s-1

	

	zeta

	138

	atm relative vorticity

	s-1

	

	ts

	139

	surface temperature

	K

	

	mrso

	140

	lwe of soil moisture content

	m

	

	snd

	141

	surface snow thickness

	m

	

	prl

	142

	lwe of large scale precipitation

	m s-1

	

	prc

	143

	convective precipitation rate

	m s-1

	

	prsn

	144

	lwe of snowfall amount

	m s-1

	

	bld

	145

	dissipation in boundary layer

	W m-2

	

	hfss

	146

	surface sensible heat flux

	W m-2

	

	hfls

	147

	surface latent heat flux

	W m-2

	

	stf

	148

	streamfunction

	m2 s-2

	

	psi

	149

	velocity potential

	m2 s-2

	

	psl

	151

	air pressure at sea level

	hPa

	

	pl

	152

	log surface pressure

	nondimensional

	

	d

	155

	divergence of wind

	s-1

	

	zg

	156

	geopotential height

	m

	

	hur

	157

	relative humidity

	nondimensional

	

	tps

	158

	tendency of surface air pressure

	Pa s-1

	

	u3

	159

	u*

	m3 s-3

	

	mrro

	160

	surface runoff

	m s-1

	

	clw

	161

	liquid water content

	nondimensional

	

	cl

	162

	cloud area fraction in layer

	nondimensional

	

	tcc

	163

	total cloud cover

	nondimensional

	

	clt

	164

	cloud area fraction

	nondimensional

	

	uas

	165

	eastward wind 10m

	m s-1

	

	vas

	166

	northward wind 10m

	m s-1

	

	tas

	167

	air temperature 2m

	K

	

	td2m

	168

	dew point temperature 2m

	K

	

	tsa

	169

	surface temperature accumulated

	K

	

	tsod

	170

	deep soil temperature

	K

	

	dsw

	171

	deep soil wetness

	nondimensional

	

	lsm

	172

	land binary mask

	nondimensional

	

	z0

	173

	surface roughness length

	m

	

	alb

	174

	surface albedo

	nondimensional

	

	as

	175

	surface albedo

	nondimensional

	

	rss

	176

	surface net shortwave flux

	W m-2

	

	rls

	177

	surface net longwave flux

	W m-2

	

	rst

	178

	toa net shortwave flux

	W m-2

	

	rlut

	179

	toa net longwave flux

	W m-2

	

	tauu

	180

	surface eastward stress

	Pa

	

	tauv

	181

	surface northward stress

	Pa

	

	evap

	182

	lwe of water evaporation

	m s-1

	

	tso

	183

	climate deep soil temperature

	K

	

	wsoi

	184

	climate deep soil wetness

	nondimensional

	

	vegc

	199

	vegetation cover

	nondimensional

	

	rsut

	203

	toa outgoing shortwave flux

	W m-2

	

	ssru

	204

	surface solar radiation upward

	W m-2

	

	stru

	205

	surface thermal radiation upward

	W m-2

	

	tso2

	207

	soil temperature level 2

	K

	

	tso3

	208

	soil temperature level 3

	K

	

	tso4

	209

	soil temperature level 4

	K

	

	sic

	210

	sea ice cover

	nondimensional

	

	sit

	211

	sea ice thickness

	m

	

	vegf

	212

	forest cover

	nondimensional

	

	snm

	218

	snow melt

	m s-1

	

	sndc

	221

	snow depth change

	m s-1

	

	prw

	230

	atmosphere water vapor content

	kg m-2

	

	glac

	232

	glacier cover

	nondimensional

	

	tsn

	238

	snow temperature

	K

	

	spd

	259

	wind speed

	m s-1

	

	pr

	260

	total precipitation

	m s-1

	

	ntr

	261

	net top radiation

	W m-2

	

	nbr

	262

	net bottom radiation

	W m-2

	

	hfns

	263

	surface downward heat flux

	W m-2

	

	wfn

	264

	net water flux

	m s-1

	

	lwth

	266

	local weathering

	W earth

	

	grnz

	267

	ground geopotential

	m2 s-2

	

	icez

	301

	glacier geopotential

	m2 s-2

	

	netz

	302

	net geopotential

	m2 s-2

	

	dpdx

	273

	d(ps)/dx

	Pa m-1

	

	dpdy

	274

	d(ps)/dy

	Pa m-1

	

	hlpr

	277

	half level pressure

	Pa

	

	flpr

	278

	full level pressure

	Pa

	

	thetah

	279

	half level potential temperature

	K

	

	theta

	280

	full level potential temperature

	K

	

	czen

	318

	cosine solar zenith angle

	nondimensional

	

	wthpr

	319

	weatherable precipitation

	mm day-1

	

	mint

	320

	minimum temperature

	K

	

	maxt

	321

	maximum temperature

	K

	

	cape

	322

	convective available potential energy

	J kg-1

	Storm Clim.

	lnb

	323

	level of neutral buoyancy

	hPa

	Storm Clim.

	sdef

	324

	troposphere entropy deficit

	nondimensional

	Storm Clim.

	absz

	325

	sigma-0.85 abs vorticity

	s-1

	Storm Clim.

	umax

	326

	maximum potential intensity

	m s-1

	Storm Clim.

	vent

	327

	ventilation index

	nondimensional

	Storm Clim.

	vrumax

	328

	ventilation-reduced maximum wind

	m s-1

	Storm Clim.

	gpi

	329

	genesis potential index

	nondimensional

	Storm Clim.

	dfu

	404

	shortwave up

	W m-2

	Snapshot Only

	dfd

	405

	shortwave down

	W m-2

	Snapshot Only

	dftu

	406

	longwave up

	W m-2

	Snapshot Only

	dftd

	407

	longwave down

	W m-2

	Snapshot Only

	dtdt

	408

	radiative heating rate

	K s-1

	Snapshot Only

	dfdz

	409

	flux convergence

	W m-3

	Snapshot Only

	mmr

	410

	aerosol mass mixing ratio

	kg kg-1

	Aerosols

	nrho

	411

	aerosol number density

	particles m-3

	Aerosols

Burn7 Postprocessor Options

The C++ burn7 postprocessor is now deprecated and unsupported. It is only available via the
exoplasim-legacy package.

exoplasim package

Module contents

	
class exoplasim.Earthlike(resolution='T21', layers=10, ncpus=4, precision=4, debug=False, inityear=0, recompile=False, optimization=None, mars=False, workdir='most', source=None, force991=False, modelname='MOST_EXP', outputtype='.npz', crashtolerant=False, outputfaulttolerant=False)

	Bases: exoplasim.Model

Create an Earth-like model, but more flexible.

Identical to Model, except configuration options common for
Earth-like models requiring slightly more flexibility are
the default when configure is called–specifically, 45-minute
timestep, snapshot output reporting every 480 timesteps, and
a model top pinned to 50 mbar. All these defaults can be overridden.

	
configure(timestep=45.0, snapshots=480, vtype=4, modeltop=50.0, **kwargs)

	Configure the model’s namelists and boundary conditions.

The defaults here are appropriate for an Earth model.

Model Operation

	noutputbool, optional
	True/False. Whether or not model output should be written.

	restartfilestr, optional
	Path to a restart file to use for initial conditions. Can be None.

	writefrequencyint, optional
	How many times per day ExoPlaSim should write output. Ignored by
default–default is to write time-averaged output once every 5 days.

	timestepfloat, optional
	Model timestep. Defaults to 45 minutes.

	runscriptfunction , optional
	A Python function that accepts a Model object as its first argument. This
is the routine that will be run when you issue the Model.run() command.
Any keyword arguments passed to run() will be forwarded to the specified
function. If not set, the default internal routine will be used.

	snapshotsint, optional
	How many timesteps should elapse between snapshot outputs. If not set,
no snapshots will be written.

	restartfilestring, optional
	Path to a restart file to use.

	highcadencedict, optional
	A dictionary containing the following arguments:

	'toggle'{0,1}
	Whether or not high-cadence output should be written (1=yes).

	'start'int
	Timestep at which high-cadence output should begin.

	'end'int
	Timestep at which high-cadence output should end.

	'interval'int
	How many timesteps should elapse between high-cadence outputs.

	thresholdfloat, optional
	Energy balance threshold model should run to, if using runtobalance().
Default is <0.05 W/m\(^2\)/yr average drift in TOA and surface energy balance
over 45-year timescales.

	resourceslist, optional
	A list of paths to any additional files that should be available in the
run directory.

	runstepsinteger, optional
	The number of timesteps to run each ‘year’. By default, this is tuned to 360 Earth days. If set, this will override other controls setting the length of each modelled year.

	otherargsdict, optional
	Any namelist parameters not included by default in the configuration options.
These should be passed as a dictionary, with “PARAMETER@namelist” as the
form of the dictionary key, and the parameter value passed as a string.
e.g. otherargs={"N_RUN_MONTHS@plasim_namelist":'4',"NGUI@plasim_namelist:'1'}

Model Dynamics

	columnmode{None,”-“,”clear”,”static”,”static|clear”,”clear|static”}, optional
	The inclusion of ‘static’ will disable horizontal advection, forcing ExoPlaSim
into a column-only mode of operation. The inclusion of ‘clear’ will disable
the radiative effects of clouds.

	drycorebool, optional
	True/False. If True, evaporation is turned off, and a dry atmosphere will
be used.

	physicsfilterstr, optional
	If not an empty string, specifies the physics filter(s) to be used. Filters
can be used during the transform from gridpoint to spectral ("gp"), and/or
during the transform from spectral to gridpoint ("sp"). Filter types are
“none”, “cesaro”, “exp”, or “lh” (see the Notes for more details).
Combinations of filter types and times should be combined with a |,
e.g. physicsfilter="gp|exp|sp" or physicsfilter="gp|cesaro".

	filterkappafloat, optional
	A constant to be used with the exponential filter. Default is 8.0.

	filterpowerint, optional
	A constant integer to be used with the exponential filter. Default is 8.

	filterLHN0float, optional
	The constant used in the denominator of the Lander-Hoskins Filter. Default
is 15; typically chosen so f(N)=0.1.

	diffusionwavenint, optional
	The critical wavenumber beyond which hyperdiffusion is applied. Default
is 15 for T21.

	qdiffusionfloat, optional
	Timescale for humidity hyperdiffusion in days. Default for T21 is 0.1.

	tdiffusionfloat, optional
	Timescale for temperature hyperdiffusion in days. Default for T21 is 5.6.

	zdiffusionfloat, optional
	Timescale for vorticity hyperdiffusion in days. Default for T21 is 1.1.

	ddiffusionfloat, optional
	Timescale for divergence hyperdiffusion in days.. Default for T21 is 0.2.

	diffusionpowerint, optional
	integer exponent used in hyperdiffusion. Default is 2 for T21.

Radiation

	fluxfloat, optional
	Incident stellar flux in W/m\(^2\). Default 1367 for Earth.

	startempfloat, optional
	Effective blackbody temperature for the star. Not used if not set.

	starradiusfloat, optional
	Radius of the parent star in solar radii. Currently only used for the optional
petitRADTRANS direct imaging postprocessor.

	starspecstr, optional
	Spectral file for the stellar spectrum. Should have two columns and 965 rows,
with wavelength in the first column and radiance or intensity in the second.
A similarly-named file with the “_hr.dat” suffix must also exist and have
2048 wavelengths. Appropriately-formatted files can be created with makestellarspec.py.

	twobandalbedobool, optional
	True/False. If True, separate albedos will be calculated for each of the
two shortwave bands. If False (default), a single broadband albedo will be
computed and used for both.

	synchronousbool, optional
	True/False. If True, the Sun is fixed to one longitude in the sky.

	desyncfloat, optional
	The rate of drift of the substellar point in degrees per minute. May be positive or negative.

	substellarlonfloat, optional
	The longitude of the substellar point, if synchronous==True. Default 180°

	pressurebroadenbool, optional
	True/False. If False, pressure-broadening of absorbers no longer depends
on surface pressure. Default is True

	ozonebool or dict, optional
	True/False/dict. Whether or not forcing from stratospheric ozone should be included. If a dict
is provided, it should contain the keys “height”, “spread”, “amount”,”varlat”,”varseason”,
and “seasonoffset”, which correspond to the height in meters of peak O3 concentration, the
width of the gaussian distribution in meters, the baseline column amount of ozone in cm-STP,
the latitudinal amplitude, the magnitude of seasonal variation, and the time offset of the
seasonal variation in fraction of a year. The three amounts are additive. To set a uniform,
unvarying O3 distribution, ,place all the ozone in “amount”, and set “varlat” and
“varseason” to 0.

	snowicealbedofloat, optional
	A uniform albedo to use for all snow and ice.

	soilalbedofloat, optional
	A uniform albedo to use for all land.

	wetsoilbool, optional
	True/False. If True, land albedo depends on soil moisture (wet=darker).

	oceanalbedofloat, optional
	A uniform albedo to use for the ocean.

	oceanzenith{“ECHAM-3”,”ECHAM-6”,”Lambertian}, optional
	The zenith-angle dependence to use for blue-light reflectance from the ocean.
Can be 'Lambertian'/'uniform', 'ECHAM-3'/'plasim'/'default', or 'ECHAM-6'.
The default is 'ECHAM-3' (synonymous with 'plasim' and 'default'), which is
the dependence used in the ECHAM-3 model.

Orbital Parameters

	yearfloat, optional
	Number of 24-hour days in a sidereal year. Not necessary if eccentricity and
obliquity are zero. Defaults if not set to ~365.25 days

	rotationperiodfloat, optional
	Planetary rotation period, in days. Default is 1.0.

	eccentricityfloat, optional
	Orbital eccentricity. If not set, defaults to Earth’s (0.016715)

	obliquityfloat, optional
	Axial tilt, in degrees. If not set, defaults to Earth’s obliquity (23.441°).

	lonvernaleqfloat, optional
	Longitude of periapse, measured from vernal equinox, in degrees. If
not set, defaults to Earth’s (102.7°).

	fixedorbitbool, optional
	True/False. If True, orbital parameters do not vary over time. If False,
variations such as Milankovich cycles will be computed by PlaSim.

	keplerianbool, optional
	True/False. If True, a generic Keplerian orbital calculation will be performed.
This means no orbital precession, Milankovich cycles, etc, but does allow for
accurate calculation of a wide diversity of orbits, including with higher
eccentricity. Note that extreme orbits may have extreme results, including
extreme crashes.

	meananomaly0float, optional
	The initial mean anomaly in degrees. Only used if keplerian=True.

Planet Parameters

	gravityfloat, optional
	Surface gravity, in m/s\(^2\). Defaults to 9.80665 m/s\(^2\).

	radiusfloat, optional
	Planet radius in Earth radii. Default is 1.0.

	orographyfloat, optional
	If set, a scaling factor for topographic relief. If orography=0.0, topography
will be zeroed-out.

	aquaplanetbool, optional
	True/False. If True, the surface will be entirely ocean-covered.

	desertplanetbool, optional
	True/False. If True, the surface will be entirely land-covered.

	tlcontrastfloat, optional
	The initial surface temperature contrast between fixedlon and the anterior point. Default is 0.0 K.

	seaicebool, optional
	True/False. If False, disables radiative effects of sea ice (although sea ice
itself is still computed).

	landmapstr, optional
	Path to a .sra file containing a land mask for the chosen resolution.

	topomapstr, optional
	Path to a .sra file containing geopotential height map. Must include landmap.

Atmosphere

	gasconfloat, optional
	Effective gas constant. Defaults to 287.0 (Earth), or the gas constant
corresponding to the composition specified by partial pressures.

	vtype{0,1,2,3,4,5}, optional
	Type of vertical discretization. Can be:
0 Pseudolinear scaling with pressure that maintains resolution near the ground.
1 Linear scaling with pressure.
2 Logarithmic scaling with pressure (resolves high altitudes)
3 Pseudologarithmic scaling with pressure that preserves resolution near the ground.
4 Pseudolinear scaling with pressure, pinned to a specified top pressure.
5 If >10 layers, bottom 10 as if vtype=4, and upper layers as if vtype=2.

	modeltopfloat, optional
	Pressure of the top layer

	tropopausefloat, optional
	If stratosphere is being included, pressure of the 10th layer (where scheme
switches from linear to logarithmic).

	stratospherebool, optional
	True/False. If True, vtype=5 is used, and model is discretized to include
a stratosphere.

	pressure: float, optional
	Surface pressure in bars, if not specified through partial pressures.

Gas Partial Pressures

Partial pressures of individual gases can be specified. If pressure and gascon are not explicitly set, these will determine surface pressure, mean molecular weight, and effective gas constant. Note however that Rayleigh scattering assumes an Earth-like composition, and the only absorbers explicitly included in the radiation scheme are CO2 and H2O.

	pH2float, optional
	H2 partial pressure in bars.

	pHefloat, optional
	He partial pressure in bars.

	pN2float, optional
	N2 partial pressure in bars.

	pO2float, optional
	O2 partial pressure in bars.

	pH2float, optional
	H2 partial pressure in bars.

	pArfloat, optional
	Ar partial pressure in bars.

	pNefloat, optional
	Ne partial pressure in bars.

	pKrfloat, optional
	Kr partial pressure in bars.

	pCH4float, optional
	Methane partial pressure in bars.

	pCO2float, optional
	CO2 partial pressure in bars. This gets translated into a ppmv concentration, so if you want to specify/vary CO2 but don’t need the other gases, specifying pCO2, pressure, and gascon will do the trick. In most use cases, however, just specifying pN2 and pCO2 will give good enough behavior.

	pH2Ofloat, optional
	H2O partial pressure in bars. This is only useful in setting the gas constant and surface pressure; it will have no effect on actual moist processes.

	pCH4float, optional
	CH4 partial pressure in bars. This is only useful in setting the gas constant and surface pressure; it will have no effect on radiation.

Surface Parameters

	mldepthfloat, optional
	Depth of the mixed-layer ocean. Default is 50 meters.

	soildepthfloat, optional
	Scaling factor for the depth of soil layers (default total of 12.4 meters)

	cpsoilfloat, optional
	Heat capacity of the soil, in J/m^3/K. Default is 2.4*10^6.

	soilwatercapfloat, optional
	Water capacity of the soil, in meters. Defaults to 0.5 meters

	soilsaturationfloat, optional
	Initial fractional saturation of the soil. Default is 0.0 (dry).

	maxsnowfloat, optional
	Maximum snow depth (Default is 5 meters; set to -1 to have no limit).

Additional Physics

	Carbon-Silicate Weathering
	
	co2weatheringbool, optional
	True/False. Toggles whether or not carbon-silicate weathering should be
computed. Default is False.

	evolveco2bool, optional
	True/False. If co2weathering==True, toggles whether or not the CO2 partial
pressure should be updated every year. Usually the change in pCO2 will be
extremely small, so this is not necessary, and weathering experiments try
to estimate the average weathering rate for a given climate in order to
interpolate timescales between climates, rather than modelling changes in CO2
over time directly.

	outgassingfloat, optional
	The assumed CO2 outgassing rate in units of Earth outgassing. Default is 1.0.

	erosionsupplylimitfloat, optional
	If set, the maximum CO2 weathering rate per year permitted by
erosion, in ubars/year. This is not simply a hard cutoff, but follows
Foley 2015 so high weathering below the cutoff is also reduced.

	Vegetation
	
	vegetationbool or int, optional
	Can be True/False, or 0/1/2. If True or 1, then diagnostic vegetation is turned on.
If 2, then coupled vegetation is turned on. Vegetation is computed via the SimBA module.

	vegaccelint, optional
	Integer factor by which to accelerate vegetation growth

	nforestgrowth: float, optional
	Biomass growth

	initgrowthfloat, optional
	Initial above-ground growth

	initstomcondfloat, optional
	Initial stomatal conductance

	initroughfloat, optional
	Initial vegetative surface roughness

	initsoilcarbonfloat, optional
	Initial soil carbon content

	initplantcarbonfloat, optional
	Initial vegetative carbon content

See [1]_ for details on the implementation of supply-limited weathering.

	Glaciology
	
	glaciersdict, optional
	A dictionary containing the following arguments:
toggle : bool

True/False. Whether or not glaciers should be allowed to grow or shrink in thickness, or be formed from persistent snow on land.

	mindepthfloat
	The minimum snow depth in meters of liquid water equivalent that must persist year-round before the grid cell is considered glaciated. Default is 2 meters.

	initialhfloat
	If >=0, covers the land surface with ice sheets of a height given in meterss. If -1, no initial ice sheets are assumed.

	Storm Climatology
	
	stormclimbool, optional
	True/False. Toggles whether or not storm climatology (convective available
potential energy, maximum potential intensity, ventilation index, etc)
should be computed. If True, output fields related to storm climatology
will be added to standard output files. Enabling this mode currently roughly
doubles the computational cost of the model. This may improve in future
updates. Refer to Paradise, et al 2021 for implementation description.

	stormcapturedict, optional
	A dictionary containing arguments controlling when high-cadence output
is triggered by storm activity. This dictionary must contain ‘toggle’, which
can be either 1 or 0 (yes or no). It may also contain any namelist
parameters accepted by hurricanemod.f90, including the following:

	toggle{0,1}
	Whether (1) or not (0) to write high-cadence output when storms occur

	NKTRIGGER{0,1}, optional
	(0/1=no/yes). Whether or not to use the Komacek, et al 2020 conditions for hurricane cyclogenesis as the output trigger. Default is no.

	VITHRESHfloat, optional
	(nktrigger) Ventilation index threshold for nktrigger output. Default 0.145

	VMXTHRESHfloat, optional
	(nktrigger) Max potential intensity threshold for nktrigger output.Default 33 m/s

	LAVTHRESHfloat, optional
	(nktrigger) Lower-atmosphere vorticity threshold for nktrigger output. Default 1.2*10^-5 s^-1

	VRMTHRESHfloat, optional
	(unused) Ventilation-reduced maximum intensity threshold. Default 0.577

	GPITHRESHfloat, optional
	(default) Genesis Potential Index threshold. Default 0.37.

	MINSURFTEMPfloat, optional
	(default) Min. surface temperature for storm activity. Default 25C

	MAXSURFTEMPfloat, optional
	(default) Max. surface temperature for storm activity. Default 100C

	WINDTHRESHfloat, optional
	(default) Lower-atmosphere maximum wind threshold for storm activity. Default 33 m/s

	SWINDTHRESHfloat, optional
	(default) Minimum surface windspeed for storm activity. Default 20.5 m/s

	SIZETHRESHfloat, optional
	(default) Minimum number of cells that must trigger to start outputDefault 30

	ENDTHRESHfloat, optional
	(default) Minimum number of cells at which point storm output ends.Default 16

	MINSTORMLENfloat, optional
	(default) Minimum number of timesteps to write output. Default 256

	MAXSTORMLENfloat, optional
	(default) Maximum number of timesteps to write output. Default 1024

Note that actual number of writes will be stormlen/interval, as set in highcadence. This interval defaults to 4, so 64 writes minimum, 256 max. For more details on the storm climatology factors considered here, see [6]_.

	Aerosols
	
	aerosolbool, optional
	If True, compute aerosol transport.

	aeroradbool, optional
	If True, include radiative scattering from aerosols. If True, you must also set aerofile.

	aerofilestr, optional
	Name/path to file constaining aerosol optical constants. If set, this will have the
effect of additionally setting aerorad=True. This should contain Q factors for extenction,
scattering, backscatter, and g in bands 1 and 2. Several samples are included in exoplasim/hazeconstants.

	aerobulkint, optional
	Type of bulk atmosphere for aerosol suspension. If 1, N2 is assumed for the dominant
bulk molecule in the atmosphere. If 2, H2 is assumed. If 3, CO2 is assumed.

	asourceint, optional
	Type of haze source. If 1, photochemical haze is produced in the top model layer.
If 2, the aerosol is dust and is produced from the surface.

	rhopfloat, optional
	Density of the aerosol particle in kg/m3

	fcoeff ; float, optional
	Initial haze mass mixing ratio in kg/kg

	apartfloat, optional
	Aerosol particle radius in meters. Default is 50 nm (50e-9).

The aerosol module (developed by Maureen J. Cohen), duplicates ExoPlaSim’s tracer transport and
uses the Flux-Form Semi-Lagrangian (FFSL) algorithm developed by S.J. Lin, adapted for
the original PlaSim by Hui Wan. It additionally includes the addition of vertical gravitational
settling of solid-phase particles. Aerosol sources are currently prescribed within the model, and
are not generated dynamically. For more information on implementation, see [2]_.

Notes

In some cases, it may be necessary to include physics filters. This typically becomes
necessary when sharp features are projected on the model’s smallest spectral modes, causing
Gibbs “ripples”. Earth-like models typically do not require filtering, but tidally-locked
models do. Filtering may be beneficial for Earth-like models at very high resolutions as well,
or if there is sharp topography.

Three filter functional forms are included in ExoPlaSim: Cesaro, exponential, and Lander-Hoskins. Their functional forms are given below, where n is the wavenumber, and N is the
truncation wavenumber (e.g. 21 for T21):

Cesaro: \(f(n)=1-\frac{n}{N+1}\) [3]_

Exponential: \(f(n)=\exp\left[-\kappa\left(\frac{n}{N}\right)^\gamma\right]\) [4]_

Lander-Hoskins: \(f(n)=\exp\left[-\left(\frac{n(n+1)}{n_0(n_0+1}\right)^2\right]\) [4]_ [5]_

\(\kappa\) is exposed to the user through filterkappa,
\(\gamma\) is exposed through filterpower, and \(n_0\) is
exposed through filterLHN0.

Physics filters can be applied at two different points; either at the transform from gridpoint
to spectral, or the reverse. We find that in most cases, the ideal usage is to use both.
Generally, a filter at the gridpoint->spectral transform is good for dealing with oscillations
caused by sharp jumps and small features in the gridpoint tendencies. Conversely, a filter
at the spectral->gridpoint transform is good for dealing with oscillations that come from
small-scale features in the spectral fields causing small-scale features to appear in the
gridpoint tendencies [4]_. Since we deal with climate systems where everything is coupled,
any oscillations not removed by one filter will be amplified through physical feedbacks if not
suppressed by the other filter.

References

[1]
Foley, B. J. (2015). The Role of Plate Tectonic-Climate Coupling and Exposed Land Area in the Development of Habitable Climates on Rocky Planets. The Astrophysical Journal, 812(1), 36. https://doi.org/10.1088/0004-637X/812/1/36

[2]
Cohen, M. J., et al (2023). Haze optical thickness in exoplanet atmospheres varies with rotation rate.

[3]
Navarra, A., Stern, W. F., & Miyakoda, K. (1994). Reduction of the Gibbs Oscillation in Spectral Model Simulations. Journal of Climate, 7(8), 1169–1183. https://doi.org/10.1175/1520-0442(1994)007<1169:ROTGOI>2.0.CO;2

[4]
Lander, J., & Hoskins, B. J. (1997). Believable Scales and Parameterizations in a Spectral Transform Model. Monthly Weather Review, 125(2), 292–303. https://doi.org/10.1175/1520-0493(1997)125<0292:BSAPIA>2.0.CO;2

[5]
Scinocca, J. F., McFarlane, N. A., Lazare, M., Li, J., & Plummer, D. (2008). Technical Note: The CCCma third generation AGCM and its extension into the middle atmosphere. Atmospheric Chemistry and Physics, 8(23), 7055–7074. https://doi.org/10.5194/acp-8-7055-2008

[6]
Komacek, T. D., Chavas, D. R., & Abbot, D. S. (2020). Hurricane Genesis is Favorable on Terrestrial Exoplanets Orbiting Late-type M Dwarf Stars. The Astrophysical Journal, 898(2), 115. https://doi.org/10.3847/1538-4357/aba0b9

	
class exoplasim.Model(resolution='T21', layers=10, ncpus=4, precision=4, debug=False, inityear=0, recompile=False, optimization=None, mars=False, workdir='most', source=None, force991=False, modelname='MOST_EXP', outputtype='.npz', crashtolerant=False, outputfaulttolerant=False)

	Bases: object

Create an ExoPlaSim model in a particular directory.

Initialize an ExoPlaSim model in a particular directory.
If the necessary executable does not yet exist, compile it.

	Parameters:

	
	resolution (str, optional) – The resolution of the model. Options are T21, T42, T63, T85,
T106, T127, and T170, corresponding to 32, 64, 96, 128, 160,
192, and 256 latitudes respectively, and twice as many
longitudes. ExoPlaSim has been tested and validated most
extensively at T21 and T42. Higher resolutions will take
considerable time to run.

	layers (int, optional) – The number of vertical layers in the model atmosphere. The default
is 10, but PlaSim has been used with 5 layers in many studies.
More layers are supported, but not recommended except at higher
resolutions.

	ncpus (int, optional) – The number of MPI processes to use, typically the number of cores
available. If ncpus=1, MPI will not be used.

	precision (int, optional) – Either 4 or 8–specifies the number of bytes for a Fortran real.

	debug (bool, optional) – If True, compiler optimizations are disabled
and the code is compiled with debugging flags enabled that will
allow line-by-line tracebacks if ExoPlaSim crashes. Only use for
development purposes.

	inityear (int, optional) – The number to use for the initial model year (default 0).

	recompile (bool, optional) – True/False flag used to force a recompile. Cannot force the
model to skip compilation if the executable does not exist or
compilation-inducing flags are set.

	optimization (str, optional) – Fortran compiler arguments for optimization. ANY compiler
flags can be passed here, but it’s intended for optimization
flags. Setting this will trigger a recompile.

	mars (bool, optional) – True/False. If True, will use Mars-specific routines.

	workdir (str, optional) – The directory in which to construct the model.

	source (str, optional) – The directory in which to look for executables, namelists,
boundary conditions, etc. If not set, will default to exoplasim/plasim/run/.

	force991 (bool, optional) – Force the use of the FFT991 library instead of the default FFT library. Recommended for advanced
use only.

	modelname (str, optional) – The name to use for the model and its output files when finished.

	outputtype (str, optional) – File extension to use for the output, if using the pyburn postprocessor. Supported extensions
are .nc, .npy, .npz, .hdf5, .he5, .h5, .csv, .gz, .txt, .tar, .tar.gz,
.tar.xz, and .tar.bz2. If using .nc, netcdf4-python must be installed. If using any of
.hdf5, .he5, or .h5, then h5py must be installed. The default is the numpy compressed
format, .npz.

	crashtolerant (bool, optional) – If True, then on a crash, ExoPlaSim will rewind 10 years and resume from there.
If fewer than 10 years have elapsed, ExoPlaSim will simply crash.

	outputfaulttolerant (bool, optional) – If True, then if the postprocessing step fails, ExoPlaSim will print an error, but continue
on to the next model year.

	Returns:

	An instantiated Model object that resides in a directory with the namelists
and executable necessary to run ExoPlaSim.

	Return type:

	Model

Examples

>>> import exoplasim as exo
>>> mymodel = exo.Model(workdir="mymodel_testrun",modelname="mymodel",resolution="T21",layers=10,ncpus=8)
>>> mymodel.configure()
>>> mymodel.exportcfg()
>>> mymodel.run(years=100,crashifbroken=True)
>>> mymodel.finalize("mymodel_output")

In this example, we initialize a model that will run in the directory
“mymodel_testrun”, and has the name “mymodel”, which will be used to
label output and error logs. The model has T21 resolution, or 32x64,
10 layers, and will run on 8 CPUs. By default, the compiler will use
8-byte precision. 4-byte may run slightly faster, but possibly at the
cost of reduced stability. If there are machine-specific optimization
flags you would like to use when compiling, you may specify them as a
string to the optimization argument, e.g. optimization='mavx'. ExoPlaSim
will check to see if an appropriate executable has already been created,
and if not (or if flags indicating special compiler behavior such as
debug=True or an optimization flag are set) it will compile one. We then
configure the model with all the default parameter choices, which means
we will get a model of Earth. We then export the model configurations
to a .cfg file (named automatically after the model), which will allow
the model configuration to be recreated exactly by other users. We
run the model for 100 years, with error-handling enabled. Finally, we
tell the model to clean up after itself. It will take the most recent
output files and rename them after the model name we chose, and delete
all the intermediate output and configuration files.

	
cfgpostprocessor(ftype='regular', extension='.npz', namelist=None, variables=['50', '51', '52', '53', '54', '110', '129', '130', '131', '132', '133', '134', '135', '137', '138', '139', '140', '141', '142', '143', '144', '145', '146', '147', '148', '149', '151', '152', '155', '156', '157', '158', '159', '160', '161', '162', '163', '164', '165', '166', '167', '168', '169', '170', '171', '172', '173', '174', '175', '176', '177', '178', '179', '180', '181', '182', '183', '184', '203', '204', '205', '207', '208', '209', '210', '211', '218', '221', '230', '232', '238', '259', '260', '261', '262', '263', '264', '265', '266', '267', '268', '269', '273', '274', '277', '278', '279', '280', '298', '299', '300', '301', '302', '303', '304', '305', '306', '307', '308', '318', '319', '320', '321', '322', '323', '324', '325', '326', '327', '328', '329', '404', '405', '406', '407', '408', '409', '410', '411'], mode='grid', zonal=False, substellarlon=180.0, physfilter=False, timeaverage=True, stdev=False, times=12, interpolatetimes=True, transit=False, image=False, h2o_linelist='Exomol', cloudfunc=None, smooth=False, smoothweight=0.95)

	Configure postprocessor options for pyburn.

Output format is determined by the file extension of outfile. Current supported formats are
NetCDF (.nc), numpy’s ``np.savez_compressed`` format (.npz), and CSV format. If NumPy’s
single-array .npy extension is used, .npz will be substituted–this is a compressed ZIP archive
containing .npy files. Additionally, the CSV output format can be used in compressed form either
individually by using the .gz file extension, or collectively via tarballs (compressed or
uncompressed).

If a tarball format (e.g. *.tar or *.tar.gz) is used, output files will be packed into a tarball.
gzip (.gz), bzip2 (.bz2), and lzma (.xz) compression types are supported. If a tarball format is
not used, then accepted file extensions are .csv, .txt, or .gz. All three will produce a
directory named following the filename pattern, with one file per variable in the directory. If
the .gz extension is used, NumPy will compress each output file using gzip compression.

CSV-type files will only contain 2D
variable information, so the first N-1 dimensions will be flattened. The original variable shape
is included in the file header (prepended with a # character) as the first items in a comma-
separated list, with the first non-dimension item given as the ‘|||’ placeholder. On reading
variables from these files, they should be reshaped according to these dimensions. This is true
even in tarballs (which contain CSV files).

A T21 model output with 10 vertical levels, 12 output times, all supported variables in grid
mode,and no standard deviation computation will have the following sizes for each format:

	Format

	Size

	netCDF

	12.8 MiB

	HDF5

	17.2 MiB

	NumPy (default)

	19.3 MiB

	tar.xz

	33.6 MiB

	tar.bz2

	36.8 MiB

	gzipped

	45.9 MiB

	uncompressed

	160.2 MiB

Using the NetCDF (.nc) format requires the netCDF4 python package.

Using the HDF4 format (.h5, .hdf5, .he5) requires the h5py python package.

All supported formats can be read by exoplasim.gcmt.load() and
will return identical data objects analogous to netCDF4 archives.

	Parameters:

	
	ftype (str, optional) – Which type of output to set for this–is this a regular output file (‘regular’), a
snapshot output file (‘snapshot’), or high-cadence (‘highcadence’)?

	extension (str, optional) – Output format to use, specified via file extension. Supported formats are netCDF (.nc),
NumPy compressed archives (.npy, .npz), HDF5 archives (.hdf5, .he5, .h5), or
plain-text comma-separated value files, which may be compressed individually or as a
tarball (.csv, .gz, .txt, .tar, .tar.gz, .tar.xz, and .tar.bz2). If using
netCDF, netcdf4-python must be installed. If using HDF5, then h5py must be installed.
The default is the numpy compressed format, .npz.

	namelist (str, optional) – Path to a burn7 postprocessor namelist file. If not given, then variables must be set.

	variables (list or dict, optional) – If a list is given, a list of either variable keycodes (integers or strings), or the abbreviated
variable name (e.g. ‘ts’ for surface temperature). If a dict is given, each item in the dictionary
should have the keycode or variable name as the key, and the desired horizontal mode and additional
options for that variable as a sub-dict. Each member of the subdict should be passable as **kwargs
to :py:func`pyburn.advancedDataset() <exoplasim.pyburn.advancedDataset>`. If None, then namelist must be set.

	mode (str, optional) – Horizontal output mode, if modes are not specified for individual variables. Options are
‘grid’, meaning the Gaussian latitude-longitude grid used
in ExoPlaSim, ‘spectral’, meaning spherical harmonics,
‘fourier’, meaning Fourier coefficients and latitudes, ‘synchronous’, meaning a
Gaussian latitude-longitude grid in the synchronous coordinate system defined in
Paradise, et al (2021), with the north pole centered on the substellar point, or
‘syncfourier’, meaning Fourier coefficients computed along the dipolar meridians in the
synchronous coordinate system (e.g. the substellar-antistellar-polar meridian, which is 0 degrees,
or the substellar-evening-antistellar-morning equatorial meridian, which is 90 degrees). Because this
will get assigned to the original latitude array, that will become -90 degrees for the polar
meridian, and 0 degrees for the equatorial meridian, identical to the typical equatorial coordinate
system.

	zonal (bool, optional) – Whether zonal means should be computed for applicable variables.

	substellarlon (float, optional) – Longitude of the substellar point. Only relevant if a synchronous coordinate output mode is chosen.

	physfilter (bool, optional) – Whether or not a physics filter should be used in spectral transforms.

	times (int or array-like or None, optional) – Either the number of timestamps by which to divide the output, or a list of times given as a fraction
of the output file duration (which enables e.g. a higher frequency of outputs during periapse of an
eccentric orbit, when insolation is changing more rapidly). Note that if a list is given, all
members of the list MUST be between 0 and 1, inclusive. If None, the timestamps in the raw output will be written directly to file.

	timeaverage (bool, optional) – Whether or not timestamps in the output file should be averaged to produce the requested number of
output timestamps. Timestamps for averaged outputs will correspond to the middle of the averaged time period.

	stdev (bool, optional) – Whether or not standard deviations should be computed. If timeaverage is True, this will be the
standard deviation over the averaged time period; if False, then it will be the standard deviation
over the whole duration of the output file

	interpolatetimes (bool, optional) – If true, then if the times requested don’t correspond to existing timestamps, outputs will be
linearly interpolated to those times. If false, then nearest-neighbor interpolation will be used.

	
configure(noutput=True, flux=1367.0, startemp=None, starradius=1.0, starspec=None, pH2=None, pHe=None, pN2=None, pO2=None, pCO2=None, pCH4=None, pAr=None, pNe=None, pKr=None, pH2O=None, gascon=None, pressure=None, pressurebroaden=True, vtype=0, rotationperiod=1.0, synchronous=False, substellarlon=180.0, keplerian=False, meananomaly0=None, year=None, glaciers={'initialh': - 1.0, 'mindepth': 2.0, 'toggle': False}, restartfile=None, gravity=10.9, radius=1.12, eccentricity=0.0, obliquity=0.0, lonvernaleq=None, fixedorbit=True, orography=None, seaice=False, co2weathering=False, evolveco2=False, physicsfilter='gp|exp|sp', filterkappa=8.0, filterpower=8, filterLHN0=15.0, diffusionwaven=None, qdiffusion=None, tdiffusion=None, zdiffusion=None, ddiffusion=None, diffusionpower=None, erosionsupplylimit=None, outgassing=50.0, snowicealbedo=None, twobandalbedo=False, maxsnow=None, soilalbedo=None, oceanalbedo=None, oceanzenith='ECHAM-3', wetsoil=False, soilwatercap=None, vegetation=False, vegaccel=1, nforestgrowth=1.0, initgrowth=0.5, initstomcond=1.0, initrough=2.0, initsoilcarbon=0.0, initplantcarbon=0.0, aquaplanet=True, desertplanet=False, soilsaturation=None, drycore=False, ozone=False, cpsoil=None, soildepth=1.0, mldepth=50.0, tlcontrast=0.0, desync=0.0, writefrequency=None, modeltop=None, stratosphere=False, top_restoretime=None, tropopause=None, timestep=15.0, runscript=None, columnmode=None, runsteps=None, highcadence={'end': 576, 'interval': 4, 'start': 320, 'toggle': 0}, snapshots=2880, resources=[], landmap=None, stormclim=False, nstorms=4, stormcapture={'ENDTHRESH': 16, 'GPITHRESH': 0.37, 'LAVTHRESH': 1.2e-05, 'MAXSTORMLEN': 1024, 'MAXSURFTEMP': 373.15, 'MINSTORMLEN': 256, 'MINSURFTEMP': 298.15, 'NKTRIGGER': 0, 'SIZETHRESH': 30, 'SWINDTHRESH': 20.5, 'VITHRESH': 0.145, 'VMXTHRESH': 33.0, 'VRMTHRESH': 0.577, 'WINDTHRESH': 33.0, 'toggle': 0}, topomap=None, threshold=0.0005, otherargs={'NLOWIO@plasim_namelist': '1', 'NQSPEC@plasim_namelist': '1'}, aerosol=False, aerobulk=1, apart=5e-09, rhop=1000.0, asource=1, fcoeff=1e-12, aerorad=True, aerofile=None)

	Configure the model’s namelists and boundary conditions.

The defaults here are appropriate for an Earth model.

Model Operation

	noutputbool, optional
	True/False. Whether or not model output should be written.

	restartfilestr, optional
	Path to a restart file to use for initial conditions. Can be None.

	writefrequencyint, optional
	How many times per day ExoPlaSim should write output. Ignored by
default–default is to write time-averaged output once every 5 days.

	timestepfloat, optional
	Model timestep. Defaults to 45 minutes.

	runscriptfunction , optional
	A Python function that accepts a Model object as its first argument. This
is the routine that will be run when you issue the Model.run() command.
Any keyword arguments passed to run() will be forwarded to the specified
function. If not set, the default internal routine will be used.

	snapshotsint, optional
	How many timesteps should elapse between snapshot outputs. If not set,
no snapshots will be written.

	restartfilestring, optional
	Path to a restart file to use.

	highcadencedict, optional
	A dictionary containing the following arguments:

	'toggle'{0,1}
	Whether or not high-cadence output should be written (1=yes).

	'start'int
	Timestep at which high-cadence output should begin.

	'end'int
	Timestep at which high-cadence output should end.

	'interval'int
	How many timesteps should elapse between high-cadence outputs.

	thresholdfloat, optional
	Energy balance threshold model should run to, if using runtobalance().
Default is <0.05 W/m\(^2\)/yr average drift in TOA and surface energy balance
over 45-year timescales.

	resourceslist, optional
	A list of paths to any additional files that should be available in the
run directory.

	runstepsinteger, optional
	The number of timesteps to run each ‘year’. By default, this is tuned to 360 Earth days. If set, this will override other controls setting the length of each modelled year.

	otherargsdict, optional
	Any namelist parameters not included by default in the configuration options.
These should be passed as a dictionary, with “PARAMETER@namelist” as the
form of the dictionary key, and the parameter value passed as a string.
e.g. otherargs={"N_RUN_MONTHS@plasim_namelist":'4',"NGUI@plasim_namelist:'1'}

Model Dynamics

	columnmode{None,”-“,”clear”,”static”,”static|clear”,”clear|static”}, optional
	The inclusion of ‘static’ will disable horizontal advection, forcing ExoPlaSim
into a column-only mode of operation. The inclusion of ‘clear’ will disable
the radiative effects of clouds.

	drycorebool, optional
	True/False. If True, evaporation is turned off, and a dry atmosphere will
be used.

	physicsfilterstr, optional
	If not an empty string, specifies the physics filter(s) to be used. Filters
can be used during the transform from gridpoint to spectral ("gp"), and/or
during the transform from spectral to gridpoint ("sp"). Filter types are
“none”, “cesaro”, “exp”, or “lh” (see the Notes for more details).
Combinations of filter types and times should be combined with a |,
e.g. physicsfilter="gp|exp|sp" or physicsfilter="gp|cesaro".

	filterkappafloat, optional
	A constant to be used with the exponential filter. Default is 8.0.

	filterpowerint, optional
	A constant integer to be used with the exponential filter. Default is 8.

	filterLHN0float, optional
	The constant used in the denominator of the Lander-Hoskins Filter. Default
is 15; typically chosen so f(N)=0.1.

	diffusionwavenint, optional
	The critical wavenumber beyond which hyperdiffusion is applied. Default
is 15 for T21.

	qdiffusionfloat, optional
	Timescale for humidity hyperdiffusion in days. Default for T21 is 0.1.

	tdiffusionfloat, optional
	Timescale for temperature hyperdiffusion in days. Default for T21 is 5.6.

	zdiffusionfloat, optional
	Timescale for vorticity hyperdiffusion in days. Default for T21 is 1.1.

	ddiffusionfloat, optional
	Timescale for divergence hyperdiffusion in days.. Default for T21 is 0.2.

	diffusionpowerint, optional
	integer exponent used in hyperdiffusion. Default is 2 for T21.

Radiation

	fluxfloat, optional
	Incident stellar flux in W/m\(^2\). Default 1367 for Earth.

	startempfloat, optional
	Effective blackbody temperature for the star. Not used if not set.

	starradiusfloat, optional
	Radius of the parent star in solar radii. Currently only used for the optional
petitRADTRANS direct imaging postprocessor.

	starspecstr, optional
	Spectral file for the stellar spectrum. Should have two columns and 965 rows,
with wavelength in the first column and radiance or intensity in the second.
A similarly-named file with the “_hr.dat” suffix must also exist and have
2048 wavelengths. Appropriately-formatted files can be created with makestellarspec.py.

	twobandalbedobool, optional
	True/False. If True, separate albedos will be calculated for each of the
two shortwave bands. If False (default), a single broadband albedo will be
computed and used for both.

	synchronousbool, optional
	True/False. If True, the Sun is fixed to one longitude in the sky.

	desyncfloat, optional
	The rate of drift of the substellar point in degrees per minute. May be positive or negative.

	substellarlonfloat, optional
	The longitude of the substellar point, if synchronous==True. Default 180°

	pressurebroadenbool, optional
	True/False. If False, pressure-broadening of absorbers no longer depends
on surface pressure. Default is True

	ozonebool or dict, optional
	True/False/dict. Whether or not forcing from stratospheric ozone should be included. If a dict
is provided, it should contain the keys “height”, “spread”, “amount”,”varlat”,”varseason”,
and “seasonoffset”, which correspond to the height in meters of peak O3 concentration, the
width of the gaussian distribution in meters, the baseline column amount of ozone in cm-STP,
the latitudinal amplitude, the magnitude of seasonal variation, and the time offset of the
seasonal variation in fraction of a year. The three amounts are additive. To set a uniform,
unvarying O3 distribution, ,place all the ozone in “amount”, and set “varlat” and
“varseason” to 0.

	snowicealbedofloat, optional
	A uniform albedo to use for all snow and ice.

	soilalbedofloat, optional
	A uniform albedo to use for all land.

	wetsoilbool, optional
	True/False. If True, land albedo depends on soil moisture (wet=darker).

	oceanalbedofloat, optional
	A uniform albedo to use for the ocean.

	oceanzenith{“ECHAM-3”,”ECHAM-6”,”Lambertian}, optional
	The zenith-angle dependence to use for blue-light reflectance from the ocean.
Can be 'Lambertian'/'uniform', 'ECHAM-3'/'plasim'/'default', or 'ECHAM-6'.
The default is 'ECHAM-3' (synonymous with 'plasim' and 'default'), which is
the dependence used in the ECHAM-3 model.

Orbital Parameters

	yearfloat, optional
	Number of 24-hour days in a sidereal year. Not necessary if eccentricity and
obliquity are zero. Defaults if not set to ~365.25 days

	rotationperiodfloat, optional
	Planetary rotation period, in days. Default is 1.0.

	eccentricityfloat, optional
	Orbital eccentricity. If not set, defaults to Earth’s (0.016715)

	obliquityfloat, optional
	Axial tilt, in degrees. If not set, defaults to Earth’s obliquity (23.441°).

	lonvernaleqfloat, optional
	Longitude of periapse, measured from vernal equinox, in degrees. If
not set, defaults to Earth’s (102.7°).

	fixedorbitbool, optional
	True/False. If True, orbital parameters do not vary over time. If False,
variations such as Milankovich cycles will be computed by PlaSim.

	keplerianbool, optional
	True/False. If True, a generic Keplerian orbital calculation will be performed.
This means no orbital precession, Milankovich cycles, etc, but does allow for
accurate calculation of a wide diversity of orbits, including with higher
eccentricity. Note that extreme orbits may have extreme results, including
extreme crashes.

	meananomaly0float, optional
	The initial mean anomaly in degrees. Only used if keplerian=True.

Planet Parameters

	gravityfloat, optional
	Surface gravity, in m/s\(^2\). Defaults to 9.80665 m/s\(^2\).

	radiusfloat, optional
	Planet radius in Earth radii. Default is 1.0.

	orographyfloat, optional
	If set, a scaling factor for topographic relief. If orography=0.0, topography
will be zeroed-out.

	aquaplanetbool, optional
	True/False. If True, the surface will be entirely ocean-covered.

	desertplanetbool, optional
	True/False. If True, the surface will be entirely land-covered.

	tlcontrastfloat, optional
	The initial surface temperature contrast between fixedlon and the anterior point. Default is 0.0 K.

	seaicebool, optional
	True/False. If False, disables radiative effects of sea ice (although sea ice
itself is still computed).

	landmapstr, optional
	Path to a .sra file containing a land mask for the chosen resolution.

	topomapstr, optional
	Path to a .sra file containing geopotential height map. Must include landmap.

Atmosphere

	gasconfloat, optional
	Effective gas constant. Defaults to 287.0 (Earth), or the gas constant
corresponding to the composition specified by partial pressures.

	vtype{0,1,2,3,4,5}, optional
	Type of vertical discretization. Can be:
0 Pseudolinear scaling with pressure that maintains resolution near the ground.
1 Linear scaling with pressure.
2 Logarithmic scaling with pressure (resolves high altitudes)
3 Pseudologarithmic scaling with pressure that preserves resolution near the ground.
4 Pseudolinear scaling with pressure, pinned to a specified top pressure.
5 If >10 layers, bottom 10 as if vtype=4, and upper layers as if vtype=2.

	modeltopfloat, optional
	Pressure of the top layer

	tropopausefloat, optional
	If stratosphere is being included, pressure of the 10th layer (where scheme
switches from linear to logarithmic).

	stratospherebool, optional
	True/False. If True, vtype=5 is used, and model is discretized to include
a stratosphere.

	pressure: float, optional
	Surface pressure in bars, if not specified through partial pressures.

Gas Partial Pressures

Partial pressures of individual gases can be specified. If pressure and gascon are not explicitly set, these will determine surface pressure, mean molecular weight, and effective gas constant. Note however that Rayleigh scattering assumes an Earth-like composition, and the only absorbers explicitly included in the radiation scheme are CO2 and H2O.

	pH2float, optional
	H2 partial pressure in bars.

	pHefloat, optional
	He partial pressure in bars.

	pN2float, optional
	N2 partial pressure in bars.

	pO2float, optional
	O2 partial pressure in bars.

	pH2float, optional
	H2 partial pressure in bars.

	pArfloat, optional
	Ar partial pressure in bars.

	pNefloat, optional
	Ne partial pressure in bars.

	pKrfloat, optional
	Kr partial pressure in bars.

	pCH4float, optional
	Methane partial pressure in bars.

	pCO2float, optional
	CO2 partial pressure in bars. This gets translated into a ppmv concentration, so if you want to specify/vary CO2 but don’t need the other gases, specifying pCO2, pressure, and gascon will do the trick. In most use cases, however, just specifying pN2 and pCO2 will give good enough behavior.

	pH2Ofloat, optional
	H2O partial pressure in bars. This is only useful in setting the gas constant and surface pressure; it will have no effect on actual moist processes.

	pCH4float, optional
	CH4 partial pressure in bars. This is only useful in setting the gas constant and surface pressure; it will have no effect on radiation.

Surface Parameters

	mldepthfloat, optional
	Depth of the mixed-layer ocean. Default is 50 meters.

	soildepthfloat, optional
	Scaling factor for the depth of soil layers (default total of 12.4 meters)

	cpsoilfloat, optional
	Heat capacity of the soil, in J/m^3/K. Default is 2.4*10^6.

	soilwatercapfloat, optional
	Water capacity of the soil, in meters. Defaults to 0.5 meters

	soilsaturationfloat, optional
	Initial fractional saturation of the soil. Default is 0.0 (dry).

	maxsnowfloat, optional
	Maximum snow depth (Default is 5 meters; set to -1 to have no limit).

Additional Physics

	Carbon-Silicate Weathering
	
	co2weatheringbool, optional
	True/False. Toggles whether or not carbon-silicate weathering should be
computed. Default is False.

	evolveco2bool, optional
	True/False. If co2weathering==True, toggles whether or not the CO2 partial
pressure should be updated every year. Usually the change in pCO2 will be
extremely small, so this is not necessary, and weathering experiments try
to estimate the average weathering rate for a given climate in order to
interpolate timescales between climates, rather than modelling changes in CO2
over time directly.

	outgassingfloat, optional
	The assumed CO2 outgassing rate in units of Earth outgassing. Default is 1.0.

	erosionsupplylimitfloat, optional
	If set, the maximum CO2 weathering rate per year permitted by
erosion, in ubars/year. This is not simply a hard cutoff, but follows
Foley 2015 so high weathering below the cutoff is also reduced.

	Vegetation
	
	vegetationbool or int, optional
	Can be True/False, or 0/1/2. If True or 1, then diagnostic vegetation is turned on.
If 2, then coupled vegetation is turned on. Vegetation is computed via the SimBA module.

	vegaccelint, optional
	Integer factor by which to accelerate vegetation growth

	nforestgrowth: float, optional
	Biomass growth

	initgrowthfloat, optional
	Initial above-ground growth

	initstomcondfloat, optional
	Initial stomatal conductance

	initroughfloat, optional
	Initial vegetative surface roughness

	initsoilcarbonfloat, optional
	Initial soil carbon content

	initplantcarbonfloat, optional
	Initial vegetative carbon content

See [1]_ for details on the implementation of supply-limited weathering.

	Glaciology
	
	glaciersdict, optional
	A dictionary containing the following arguments:
toggle : bool

True/False. Whether or not glaciers should be allowed to grow or shrink in thickness, or be formed from persistent snow on land.

	mindepthfloat
	The minimum snow depth in meters of liquid water equivalent that must persist year-round before the grid cell is considered glaciated. Default is 2 meters.

	initialhfloat
	If >=0, covers the land surface with ice sheets of a height given in meterss. If -1, no initial ice sheets are assumed.

	Storm Climatology
	
	stormclimbool, optional
	True/False. Toggles whether or not storm climatology (convective available
potential energy, maximum potential intensity, ventilation index, etc)
should be computed. If True, output fields related to storm climatology
will be added to standard output files. Enabling this mode currently roughly
doubles the computational cost of the model. This may improve in future
updates. Refer to Paradise, et al 2021 for implementation description.

	stormcapturedict, optional
	A dictionary containing arguments controlling when high-cadence output
is triggered by storm activity. This dictionary must contain ‘toggle’, which
can be either 1 or 0 (yes or no). It may also contain any namelist
parameters accepted by hurricanemod.f90, including the following:

	toggle{0,1}
	Whether (1) or not (0) to write high-cadence output when storms occur

	NKTRIGGER{0,1}, optional
	(0/1=no/yes). Whether or not to use the Komacek, et al 2020 conditions for hurricane cyclogenesis as the output trigger. Default is no.

	VITHRESHfloat, optional
	(nktrigger) Ventilation index threshold for nktrigger output. Default 0.145

	VMXTHRESHfloat, optional
	(nktrigger) Max potential intensity threshold for nktrigger output.Default 33 m/s

	LAVTHRESHfloat, optional
	(nktrigger) Lower-atmosphere vorticity threshold for nktrigger output. Default 1.2*10^-5 s^-1

	VRMTHRESHfloat, optional
	(unused) Ventilation-reduced maximum intensity threshold. Default 0.577

	GPITHRESHfloat, optional
	(default) Genesis Potential Index threshold. Default 0.37.

	MINSURFTEMPfloat, optional
	(default) Min. surface temperature for storm activity. Default 25C

	MAXSURFTEMPfloat, optional
	(default) Max. surface temperature for storm activity. Default 100C

	WINDTHRESHfloat, optional
	(default) Lower-atmosphere maximum wind threshold for storm activity. Default 33 m/s

	SWINDTHRESHfloat, optional
	(default) Minimum surface windspeed for storm activity. Default 20.5 m/s

	SIZETHRESHfloat, optional
	(default) Minimum number of cells that must trigger to start outputDefault 30

	ENDTHRESHfloat, optional
	(default) Minimum number of cells at which point storm output ends.Default 16

	MINSTORMLENfloat, optional
	(default) Minimum number of timesteps to write output. Default 256

	MAXSTORMLENfloat, optional
	(default) Maximum number of timesteps to write output. Default 1024

Note that actual number of writes will be stormlen/interval, as set in highcadence. This interval defaults to 4, so 64 writes minimum, 256 max. For more details on the storm climatology factors considered here, see [6]_.

	Aerosols
	
	aerosolbool, optional
	If True, compute aerosol transport.

	aeroradbool, optional
	If True, include radiative scattering from aerosols. If True, you must also set aerofile.

	aerofilestr, optional
	Name/path to file constaining aerosol optical constants. If set, this will have the
effect of additionally setting aerorad=True. This should contain Q factors for extenction,
scattering, backscatter, and g in bands 1 and 2. Several samples are included in exoplasim/hazeconstants.

	aerobulkint, optional
	Type of bulk atmosphere for aerosol suspension. If 1, N2 is assumed for the dominant
bulk molecule in the atmosphere. If 2, H2 is assumed. If 3, CO2 is assumed.

	asourceint, optional
	Type of haze source. If 1, photochemical haze is produced in the top model layer.
If 2, the aerosol is dust and is produced from the surface.

	rhopfloat, optional
	Density of the aerosol particle in kg/m3

	fcoeff ; float, optional
	Initial haze mass mixing ratio in kg/kg

	apartfloat, optional
	Aerosol particle radius in meters. Default is 50 nm (50e-9).

The aerosol module (developed by Maureen J. Cohen), duplicates ExoPlaSim’s tracer transport and
uses the Flux-Form Semi-Lagrangian (FFSL) algorithm developed by S.J. Lin, adapted for
the original PlaSim by Hui Wan. It additionally includes the addition of vertical gravitational
settling of solid-phase particles. Aerosol sources are currently prescribed within the model, and
are not generated dynamically. For more information on implementation, see [2]_.

Notes

In some cases, it may be necessary to include physics filters. This typically becomes
necessary when sharp features are projected on the model’s smallest spectral modes, causing
Gibbs “ripples”. Earth-like models typically do not require filtering, but tidally-locked
models do. Filtering may be beneficial for Earth-like models at very high resolutions as well,
or if there is sharp topography.

Three filter functional forms are included in ExoPlaSim: Cesaro, exponential, and Lander-Hoskins. Their functional forms are given below, where n is the wavenumber, and N is the
truncation wavenumber (e.g. 21 for T21):

Cesaro: \(f(n)=1-\frac{n}{N+1}\) [3]_

Exponential: \(f(n)=\exp\left[-\kappa\left(\frac{n}{N}\right)^\gamma\right]\) [4]_

Lander-Hoskins: \(f(n)=\exp\left[-\left(\frac{n(n+1)}{n_0(n_0+1}\right)^2\right]\) [4]_ [5]_

\(\kappa\) is exposed to the user through filterkappa,
\(\gamma\) is exposed through filterpower, and \(n_0\) is
exposed through filterLHN0.

Physics filters can be applied at two different points; either at the transform from gridpoint
to spectral, or the reverse. We find that in most cases, the ideal usage is to use both.
Generally, a filter at the gridpoint->spectral transform is good for dealing with oscillations
caused by sharp jumps and small features in the gridpoint tendencies. Conversely, a filter
at the spectral->gridpoint transform is good for dealing with oscillations that come from
small-scale features in the spectral fields causing small-scale features to appear in the
gridpoint tendencies [4]_. Since we deal with climate systems where everything is coupled,
any oscillations not removed by one filter will be amplified through physical feedbacks if not
suppressed by the other filter.

References

[1]
Foley, B. J. (2015). The Role of Plate Tectonic-Climate Coupling and Exposed Land Area in the Development of Habitable Climates on Rocky Planets. The Astrophysical Journal, 812(1), 36. https://doi.org/10.1088/0004-637X/812/1/36

[2]
Cohen, M. J., et al (2023). Haze optical thickness in exoplanet atmospheres varies with rotation rate.

[3]
Navarra, A., Stern, W. F., & Miyakoda, K. (1994). Reduction of the Gibbs Oscillation in Spectral Model Simulations. Journal of Climate, 7(8), 1169–1183. https://doi.org/10.1175/1520-0442(1994)007<1169:ROTGOI>2.0.CO;2

[4]
Lander, J., & Hoskins, B. J. (1997). Believable Scales and Parameterizations in a Spectral Transform Model. Monthly Weather Review, 125(2), 292–303. https://doi.org/10.1175/1520-0493(1997)125<0292:BSAPIA>2.0.CO;2

[5]
Scinocca, J. F., McFarlane, N. A., Lazare, M., Li, J., & Plummer, D. (2008). Technical Note: The CCCma third generation AGCM and its extension into the middle atmosphere. Atmospheric Chemistry and Physics, 8(23), 7055–7074. https://doi.org/10.5194/acp-8-7055-2008

[6]
Komacek, T. D., Chavas, D. R., & Abbot, D. S. (2020). Hurricane Genesis is Favorable on Terrestrial Exoplanets Orbiting Late-type M Dwarf Stars. The Astrophysical Journal, 898(2), 115. https://doi.org/10.3847/1538-4357/aba0b9

	
emergencyabort()

	A problem has been encountered by an external script, and the model needs to crash gracefully

	
exportcfg(filename=None)

	Export model configuration to a text file that can be used as configuration input

Write the current model configuration to a text file. This file can be shared and used by
other users to recreate your model configuration.

	Parameters:

	filename (str, optional) – Path to the file that should be written. If None (default), <modelname>.cfg
will be created in the working directory.

See also

loadconfig : Load a saved configuration.

 Python Module Index

 Python Module Index

 e

 		 	

 		
 e	

 	[image: -]
 	
 exoplasim	

 	
 	
 exoplasim.gcmt	

 	
 	
 exoplasim.makestellarspec	

 	
 	
 exoplasim.pRT	

 	
 	
 exoplasim.pyburn	

 	
 	
 exoplasim.randomcontinents	

 Index

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W
 | X

A

 	
 	adist() (in module exoplasim.gcmt)

 	
 	advancedDataset() (in module exoplasim.pyburn)

B

 	
 	basicclouds() (in module exoplasim.pRT)

 	
 	blackbody() (in module exoplasim.gcmt)

C

 	
 	cfgpostprocessor() (exoplasim.Model method)

 	configure() (exoplasim.Earthlike method)

 	(exoplasim.Model method)

 	(exoplasim.TLaquaplanet method)

 	(exoplasim.TLlandplanet method)

 	(exoplasim.TLmodel method)

 	
 	cspatialmath() (in module exoplasim.gcmt)

 	csv() (in module exoplasim.pyburn)

D

 	
 	DatafileError

 	
 	dataset() (in module exoplasim.pyburn)

 	DimensionError

E

 	
 	Earthlike (class in exoplasim)

 	emergencyabort() (exoplasim.Model method)

 	eq2tl() (in module exoplasim.gcmt)

 	eq2tl_coords() (in module exoplasim.gcmt)

 	eq2tl_uv() (in module exoplasim.gcmt)

 	eqstream() (in module exoplasim.gcmt)

 	
 exoplasim

 	module

 	
 exoplasim.gcmt

 	module

 	
 	
 exoplasim.makestellarspec

 	module, [1]

 	
 exoplasim.pRT

 	module

 	
 exoplasim.pyburn

 	module

 	
 exoplasim.randomcontinents

 	module

 	exportcfg() (exoplasim.Model method)

F

 	
 	finalize() (exoplasim.Model method)

G

 	
 	generate() (in module exoplasim.randomcontinents)

 	get() (exoplasim.Model method)

 	
 	getbalance() (exoplasim.Model method)

 	gethistory() (exoplasim.Model method)

H

 	
 	hdf5() (in module exoplasim.pyburn)

I

 	
 	image() (exoplasim.Model method)

 	(in module exoplasim.pRT)

 	
 	inspect() (exoplasim.Model method)

 	integritycheck() (exoplasim.Model method)

L

 	
 	latmean() (in module exoplasim.gcmt)

 	latsum() (in module exoplasim.gcmt)

 	load() (in module exoplasim.gcmt)

 	
 	loadconfig() (exoplasim.Model method)

 	lonmean() (in module exoplasim.gcmt)

 	lonsum() (in module exoplasim.gcmt)

M

 	
 	main() (in module exoplasim.makestellarspec)

 	(in module exoplasim.randomcontinents)

 	make2d() (in module exoplasim.gcmt)

 	makecolors() (in module exoplasim.pRT)

 	makeintensities() (in module exoplasim.pRT)

 	Model (class in exoplasim)

 	modify() (exoplasim.Model method)

 	
 	
 module

 	exoplasim

 	exoplasim.gcmt

 	exoplasim.makestellarspec, [1]

 	exoplasim.pRT

 	exoplasim.pyburn

 	exoplasim.randomcontinents

N

 	
 	netcdf() (in module exoplasim.pyburn)

 	
 	npsavez() (in module exoplasim.pyburn)

O

 	
 	orennayarcorrection() (in module exoplasim.pRT)

 	
 	orennayarcorrection_col() (in module exoplasim.pRT)

 	orthographic() (in module exoplasim.gcmt)

P

 	
 	parse() (in module exoplasim.gcmt)

 	postprocess() (exoplasim.Model method)

 	(in module exoplasim.pyburn)

 	
 	printsysconfig() (in module exoplasim)

R

 	
 	readallvariables() (in module exoplasim.pyburn)

 	readfile() (in module exoplasim.pyburn)

 	readrecord() (in module exoplasim.pyburn)

 	readspec() (in module exoplasim.makestellarspec)

 	
 	readvariablecode() (in module exoplasim.pyburn)

 	refactorvariable() (in module exoplasim.pyburn)

 	run() (exoplasim.Model method)

 	runtobalance() (exoplasim.Model method)

S

 	
 	save() (exoplasim.Model method)

 	(in module exoplasim.pRT)

 	
 	spatialmath() (in module exoplasim.gcmt)

 	streamfxn() (in module exoplasim.gcmt)

 	sysconfigure() (in module exoplasim)

T

 	
 	tl2eq() (in module exoplasim.gcmt)

 	tl2eq_coords() (in module exoplasim.gcmt)

 	TLaquaplanet (class in exoplasim)

 	TLlandplanet (class in exoplasim)

 	
 	TLmodel (class in exoplasim)

 	tlstream() (in module exoplasim.gcmt)

 	transit() (exoplasim.Model method)

 	(in module exoplasim.pRT)

U

 	
 	UnitError

W

 	
 	wrap2d() (in module exoplasim.gcmt)

 	writedat() (in module exoplasim.makestellarspec)

 	
 	writePGM() (in module exoplasim.randomcontinents)

 	writeSRA() (in module exoplasim.randomcontinents)

X

 	
 	xcolorbar() (in module exoplasim.gcmt)

 GNU LESSER GENERAL PUBLIC LICENSE

GNU LESSER GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc.
https://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

This version of the GNU Lesser General Public License incorporates the
terms and conditions of version 3 of the GNU General Public License,
supplemented by the additional permissions listed below.

0. Additional Definitions.

As used herein, “this License” refers to version 3 of the GNU Lesser
General Public License, and the “GNU GPL” refers to version 3 of the
GNU General Public License.

“The Library” refers to a covered work governed by this License, other
than an Application or a Combined Work as defined below.

An “Application” is any work that makes use of an interface provided
by the Library, but which is not otherwise based on the Library.
Defining a subclass of a class defined by the Library is deemed a mode
of using an interface provided by the Library.

A “Combined Work” is a work produced by combining or linking an
Application with the Library. The particular version of the Library
with which the Combined Work was made is also called the “Linked
Version”.

The “Minimal Corresponding Source” for a Combined Work means the
Corresponding Source for the Combined Work, excluding any source code
for portions of the Combined Work that, considered in isolation, are
based on the Application, and not on the Linked Version.

The “Corresponding Application Code” for a Combined Work means the
object code and/or source code for the Application, including any data
and utility programs needed for reproducing the Combined Work from the
Application, but excluding the System Libraries of the Combined Work.

1. Exception to Section 3 of the GNU GPL.

You may convey a covered work under sections 3 and 4 of this License
without being bound by section 3 of the GNU GPL.

2. Conveying Modified Versions.

If you modify a copy of the Library, and, in your modifications, a
facility refers to a function or data to be supplied by an Application
that uses the facility (other than as an argument passed when the
facility is invoked), then you may convey a copy of the modified
version:

	a) under this License, provided that you make a good faith effort
to ensure that, in the event an Application does not supply the
function or data, the facility still operates, and performs
whatever part of its purpose remains meaningful, or

	b) under the GNU GPL, with none of the additional permissions of
this License applicable to that copy.

3. Object Code Incorporating Material from Library Header Files.

The object code form of an Application may incorporate material from a
header file that is part of the Library. You may convey such object
code under terms of your choice, provided that, if the incorporated
material is not limited to numerical parameters, data structure
layouts and accessors, or small macros, inline functions and templates
(ten or fewer lines in length), you do both of the following:

	a) Give prominent notice with each copy of the object code that
the Library is used in it and that the Library and its use are
covered by this License.

	b) Accompany the object code with a copy of the GNU GPL and this
license document.

4. Combined Works.

You may convey a Combined Work under terms of your choice that, taken
together, effectively do not restrict modification of the portions of
the Library contained in the Combined Work and reverse engineering for
debugging such modifications, if you also do each of the following:

	a) Give prominent notice with each copy of the Combined Work that
the Library is used in it and that the Library and its use are
covered by this License.

	b) Accompany the Combined Work with a copy of the GNU GPL and this
license document.

	c) For a Combined Work that displays copyright notices during
execution, include the copyright notice for the Library among
these notices, as well as a reference directing the user to the
copies of the GNU GPL and this license document.

	d) Do one of the following:

	
	Convey the Minimal Corresponding Source under the terms of
this License, and the Corresponding Application Code in a form
suitable for, and under terms that permit, the user to
recombine or relink the Application with a modified version of
the Linked Version to produce a modified Combined Work, in the
manner specified by section 6 of the GNU GPL for conveying
Corresponding Source.

	
	Use a suitable shared library mechanism for linking with
the Library. A suitable mechanism is one that (a) uses at run
time a copy of the Library already present on the user’s
computer system, and (b) will operate properly with a modified
version of the Library that is interface-compatible with the
Linked Version.

	e) Provide Installation Information, but only if you would
otherwise be required to provide such information under section 6
of the GNU GPL, and only to the extent that such information is
necessary to install and execute a modified version of the
Combined Work produced by recombining or relinking the Application
with a modified version of the Linked Version. (If you use option
4d0, the Installation Information must accompany the Minimal
Corresponding Source and Corresponding Application Code. If you
use option 4d1, you must provide the Installation Information in
the manner specified by section 6 of the GNU GPL for conveying
Corresponding Source.)

5. Combined Libraries.

You may place library facilities that are a work based on the Library
side by side in a single library together with other library
facilities that are not Applications and are not covered by this
License, and convey such a combined library under terms of your
choice, if you do both of the following:

	a) Accompany the combined library with a copy of the same work
based on the Library, uncombined with any other library
facilities, conveyed under the terms of this License.

	b) Give prominent notice with the combined library that part of it
is a work based on the Library, and explaining where to find the
accompanying uncombined form of the same work.

6. Revised Versions of the GNU Lesser General Public License.

The Free Software Foundation may publish revised and/or new versions
of the GNU Lesser General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library
as you received it specifies that a certain numbered version of the
GNU Lesser General Public License “or any later version” applies to
it, you have the option of following the terms and conditions either
of that published version or of any later version published by the
Free Software Foundation. If the Library as you received it does not
specify a version number of the GNU Lesser General Public License, you
may choose any version of the GNU Lesser General Public License ever
published by the Free Software Foundation.

If the Library as you received it specifies that a proxy can decide
whether future versions of the GNU Lesser General Public License shall
apply, that proxy’s public statement of acceptance of any version is
permanent authorization for you to choose that version for the
Library.

 exoplasim

exoplasim

	exoplasim package
	Module contents

	Submodules

	exoplasim.gcmt module

	exoplasim.pyburn module

	exoplasim.randomcontinents module

	exoplasim.makestellarspec module

	exoplasim.pRT module

nav.xhtml

 Table of Contents

 		
 ExoPlaSim Python API Documentation

 		
 ExoPlaSim Tutorial

 		
 Setting Up

 		
 Configuring the model for TOI-700d

 		
 Running the Model

 		
 Inspecting the Data

 		
 A Shortcut for TOI 700 d

 		
 Postprocessing ExoPlaSim Outputs

 		
 The Basics: Formats, Variables, and Math

 		
 Format

 		
 Variables

 		
 Postprocessing Math

 		
 Reading Postprocessed Files

 		
 Postprocessor Variable Codes

 		
 Burn7 Postprocessor Options

 		
 exoplasim package

 		
 Module contents

 		
 Submodules

 		
 exoplasim.gcmt module

 		
 exoplasim.pyburn module

 		
 exoplasim.randomcontinents module

 		
 exoplasim.makestellarspec module

 		
 exoplasim.pRT modu