Source code for exoplasim.pRT

import numpy as np
import multiprocessing as mp
from petitRADTRANS import Radtrans
from petitRADTRANS import nat_cst as nc
#import exoplasim.surfacespecs
#import exoplasim.surfacespecs as spec
#import exoplasim.constants
#from exoplasim.constants import smws
import exoplasim.pyburn
import exoplasim.surfacespecs
import exoplasim.surfacespecs as spec
import exoplasim.constants
from exoplasim.constants import smws
from itertools import repeat
import exoplasim.colormatch
import exoplasim.colormatch as cmatch


def _log(destination,string):
    if destination is None:
        if string=="\n":
            print()
        else:
            print(string)
    else:
        with open(destination,"a") as f:
            f.write(string+"\n")

[docs] def basicclouds(pressure,temperature,cloudwater): '''A basic cloud parameterization using T-dependent particle size distribution. This could be replaced with a different (better) cloud particle parameterization, but it should have the same call signature and return the same thing. This parameterization is borrowed from Edwards, et al (2007, doi:10.1016/j.atmosres.2006.03.002). Parameters ---------- pressure : numpy.ndarray Pressure array for a column of the model temperature : numpy.ndarray Air temperatures for a column [K] cloudwater : numpy.ndarray Cloud water as a mass fraction [kg/kg] -- this is condensed water suspended in the cloud. Returns ------- dict Dictionary of keyword arguments for setting clouds with an empirical particle size distribution. ''' radius = {'H2O(c)':np.ones_like(pressure)*8e-4} #8 microns radius['H2O(c)'][temperature<=216.21] = (975.51*np.exp(0.05*(temperature[temperature<=216.21]-279.5))+0.66)*1e-4 radius['H2O(c)'][temperature>216.21] = (175.44*np.exp(0.05*(temperature[temperature>216.21]-279.5))+34.45)*1e-4 radius['H2O(c)'][temperature>240] = 20e-4 #20-micron water droplets #Edwards et al 2007 doi:10.1016/j.atmosres.2006.03.002 sigma_lnorm = 1.05 return {'radius':radius, 'sigma_lnorm':sigma_lnorm}
def _adistance(lons,lats,tlon,tlat): '''Spherical law of Cosines to give angular distance in radians Parameters ---------- lons : numpy.ndarray (1D) or float Longitudes in degrees against which to compare lats : numpy.ndarray (1D) or float Latitudes in degrees against which to compare tlon : float Target longitude in degrees tlat : float Target latitude in degrees Returns ------- numpy.ndarray or float Angular distance to each in (lons,lats) ''' rtlat = tlat*np.pi/180. rtlon = tlon*np.pi/180. rlons = lons*np.pi/180. rlats = lats*np.pi/180. distance = abs(np.arccos(np.sin(rtlat)*np.sin(rlats)+np.cos(rtlat)*np.cos(rlats)*np.cos(rlons-rtlon))) return distance def _awidth(lons,lats,tlon,tlat): distances = np.sort(_adistance(lons,lats,tlon,tlat),axis=0) width = 0.5*(distances[1]+distances[2]) return width def _smooth(array,xcoords=None,xN=None,centerweight=0.95): '''Perform a conservative smoothing, such that the sum of either array or array*dx (if xcoords provided) is conserved. This routine keeps centerweight percent in each cell, and redistributes the rest into the neighboring cells. Parameters ---------- array : 1D array Data array to be smoothed. xcoords : 1D array (optional) If provided, must have same shape as array. xN must also be provided. xN : float, optional Bookend value to use at the upper end of the array when computing dx. centerweight : float, optional The fraction of each cell that should be kept in the cell. Returns ------- 1D array Smoothed array ''' padded = np.append(np.append([0.,],array),[0.,]) edgeweight = 0.5*(1-centerweight) if xcoords is None: newarr = edgeweight*padded[:-2] + centerweight*padded[1:-1] + edgeweight*padded[2:] else: dx = np.diff(np.append(np.append(0.5*xcoords[0],0.5*(xcoords[:-1]+xcoords[1:])),xN)) padded[1:-1] *= dx #brings us from density to mass newarr = (edgeweight*padded[:-2] + centerweight*padded[1:-1] + edgeweight*padded[2:])/dx return newarr def _airmass(pa,ps,ta,hus,gascon,gravity): '''Compute the column density contribution of each layer in a column. Parameters ---------- pa : array-like 1D array of mid-layer pressures in hPa. ps : float Surface pressure in hPa. ta : array-like 1D array of layer air temperatures in K. hus : array-like 1D array of specific humidity in kg/kg. gascon : float Specific gas constant of dry air, in J/kg/K. gravity : float Surface gravity in SI units. Returns ------- array-like Mass per area contribution (kg/m^2) of each layer in the column. ''' e = gascon/461.5 #Rd/Rv hp = np.append(0.5*pa[0],np.append(0.5*(pa[:-1]+pa[1:]),ps)) vtemp =ta*(hus+e)/(e*(1+hus)) #virtual temperature dz = gascon*vtemp/gravity*np.log(hp[1:]/hp[:-1]) airdensity = pa*100./(gascon*vtemp) return airdensity*dz def _fill(hum,airmass,minvalue=1.0e-6): '''Fill dry layers beneath wet layers to a minimum value, and then remove moisture from the wet values in a mass-conserving way. Wet layers will only be dried out to the minimum value. For most columns this is mass-conserving to within a few percent or better. Parameters ---------- hum : array-like The humidity array to be adjusted. Must be a mixing ratio in kg/kg. airmass : array-like The mass per area contribution of each layer, such that the sum is equal to the total column density, in kg/m^2. minvalue : float, optional The fill value to use. Returns ------- array-like Adjusted humidity array. ''' cloud=False newhum = np.copy(hum) for k in range(len(hum)): if hum[k]>minvalue: #Everything below this needs to be filled. cloud=True if cloud: newhum[k] = max(hum[k],minvalue) if cloud: excess = newhum-hum excessmass = excess*airmass if np.sum(excessmass)>np.sum(hum*airmass): print("More water was dumped in than was in the cloud layers....") print(np.sum(excessmass),np.sum(hum*airmass)) for k in range(len(hum)-1,-1,-1): if excessmass[k]>0: for j in range(k,-1,-1): if newhum[j]>minvalue: if (newhum[j]-minvalue)*airmass[j]>=excessmass[k]: newhum[j] = (newhum[j]*airmass[j] - excessmass[k])/airmass[j] excessmass[k] = 0.0 break elif newhum[j]>minvalue: dhum = newhum[j]-minvalue excessmass[k] -= dhum*airmass[j] newhum[j] = minvalue return newhum def _transitcolumn(atmosphere, pressures, psurf, temperature, humidity, clouds, gases_vmr, gascon, gravity, rplanet, h2o_lines,cloudfunc,smooth,smoothweight,ozone,ozoneheight,ozonespread,num): '''Compute the transit spectrum through a single column. Parameters ---------- atmosphere : Radtrans.Atmosphere Initialized Atmosphere object pressures : numpy.ndarray Pressure array in hPa, with the surface at the end of the array psurf : float Surface pressure in hPa temperature : numpy.ndarray Array of air temperatures, with the surface at the end of the array humidity : numpy.ndarray Specific humidity in the column [kg/kg] clouds : numpy.ndarray Cloud water mass fraction in each cell [kg/kg] gases_vmr : dict Dictionary of component gases and their volume mixing ratios gascon : float Specific gas constant gravity : float Surface gravity in SI units rplanet : float Planet radius in kilometers h2o_lines : {'HITEMP', 'EXOMOL'} Line list to use for H2O absorption. Options are 'HITEMP' or 'EXOMOL'. cloudfunc : function A routine which takes pressure, temperature, and cloud water content as arguments, and returns keyword arguments to be unpacked into calc_flux_transm. smooth : bool Whether or not to smooth humidity and cloud columns. As of Nov 12, 2021, it is recommended that you use smooth=True for well-behaved spectra. This is a conservative smoothing operation, meaning the water and cloud column mass should be conserved--what this does is move some water from the water-rich layers into the layers directly above and below. smoothweight : float The fraction of the water in a layer that should be retained during smoothing. A higher value means the smoothing is less severe. 0.95 is probably the upper limit for well-behaved spectra. ozone : float Ozone column amount [cm-STP] ozoneheight : float Altitude of maximum ozone concentration [m] ozonespread : float Width of the ozone gaussian distribution [m] num : int, float Which number column this is (used for reporting) Returns ------- numpy.ndarray Transmission radius in kilometers ''' print("Doing column %d"%num) temperature = temperature[0] pressures = pressures[0] humidity = humidity[0] clouds = clouds[0] #Define vertical profiles with ghost stratosphere extp = np.append(np.geomspace(1.0e-6,0.5*pressures[0],num=20),pressures) try: extta = np.append(np.ones(20)*temperature[0],temperature) except: print(temperature.shape) raise exthus = np.append(np.zeros(20),humidity) extcl = np.append(np.zeros(20),clouds) if smooth: exthus = _smooth(exthus,xcoords=extp,xN=psurf,centerweight=smoothweight) extcl = _smooth(extcl,xcoords=extp,xN=psurf,centerweight=smoothweight) #Set up atmosphere atmosphere.setup_opa_structure(extp*1.0e-3) MMW = 8.31446261815324/gascon*1.0e3*np.ones_like(extp) #grams per mole #Set absorber fractions mass_fractions = {} for gas in gases_vmr: mmass = smws['m'+gas] mass_fractions[gas] = gases_vmr[gas] * mmass/MMW * (1-exthus-extcl) mass_fractions['H2O_'+h2o_lines] = exthus*(1-extcl) mass_fractions['H2O(c)'] = extcl kwargs = cloudfunc(extp,extta,extcl) #Compute ozone from parameterization mass_fractions['O3'] = np.zeros_like(extp) zfo3 = 100./2.14 zo3t = ozone bo3 = ozoneheight co3 = ozonespread zh = 0.0 zconst = np.exp(-bo3/co3) ga = gravity*0.01 #SI units extdp = np.gradient(extp)*1e2 for k in range(len(extp)-1,0,-1): zh -= extta[k]*gascon/ga*np.log(extp[k-1]/extp[k]) zo3 = -(ozone + ozone*zconst)/(1.+np.exp((zh-bo3)/co3))+zo3t mass_fractions['O3'][k]=zo3*ga/(zfo3*extdp[k]) zo3t -= zo3 mass_fractions['O3'][0] = zo3t * ga / (zfo3 * extdp[0]) if smooth: mass_fractions['O3'] = _smooth(mass_fractions['O3'],xcoords=extp,xN=psurf,centerweight=smoothweight) #Compute flux atmosphere.calc_transm(extta, mass_fractions, gravity, MMW, \ P0_bar=psurf*1.0e-3, R_pl=rplanet*1e5,**kwargs) return atmosphere.transm_rad*1e-5 #kilometers
[docs] def transit(output,transittimes,gases_vmr, gascon=287.0, gravity=9.80665, rplanet=6.371e3,h2o_lines='HITEMP',num_cpus=4,cloudfunc=None, smooth=False,smoothweight=0.95,ozone=False,stepsperyear=11520.0, logfile=None): '''Compute transmission spectra for snapshot output This routine computes the transmission spectrum for each atmospheric column along the terminator, for each time in transittimes. Note: This routine does not currently include emission from atmospheric layers. Parameters ---------- output : ExoPlaSim snapshot output Preferably opened with :py:func:`exoplasim.gcmt.load`. transittimes : list(int) List of time indices at which the transit should be computed. gases_vmr : dict Dictionary of gas species volume mixing ratios for the atmosphere gascon : float, optional Specific gas constant gravity : float, optional Surface gravity in SI units rplanet : float, optional Planet radius in km h2o_lines : {'HITEMP','EXOMOL'}, optional Either 'HITEMP' or 'EXOMOL'--the line list from which H2O absorption should be sourced num_cpus : int, optional The number of CPUs to use cloudfunc : function, optional A routine which takes pressure, temperature, and cloud water content as arguments, and returns keyword arguments to be unpacked into calc_flux_transm. If not specified, `basicclouds` will be used. smooth : bool, optional Whether or not to smooth humidity and cloud columns. As of Nov 12, 2021, it is recommended that you use smooth=True for well-behaved spectra. This is a conservative smoothing operation, meaning the water and cloud column mass should be conserved--what this does is move some water from the water-rich layers into the layers directly above and below. smoothweight : float, optional The fraction of the water in a layer that should be retained during smoothing. A higher value means the smoothing is less severe. 0.95 is probably the upper limit for well-behaved spectra. Returns ------- Atmosphere,numpy.ndarray,numpy.ndarray,numpy.darray,numpy.ndarray pRT Atmosphere object, Wavelength in microns, array of all transit columns with shape (ntimes,nterm,nfreq), where nterm is the number of terminator columns (time-varying), and nfreq is the number of frequencies in the spectrum, array of lon-lat coordinates for each transit specturm, array of spatial weights for each column with the shape (ntimes,nterm) (for averaging), and the spatially-averaged transit spectrum, with shape (ntimes,nfreq). Transit radius is in km. ''' _log(logfile,"===================================") _log(logfile,"| ExoPlaSim->petitRADTRANS Engine |") _log(logfile,"| v1.0, Adiv Paradise (c) 2021 |") _log(logfile,"===================================") _log(logfile,"\n") _log(logfile,"--------Transit Spectrograph-------") _log(logfile,"\n") gravity *= 100.0 #SI->CGS _log(logfile,"Initializing petitRADTRANS atmosphere.....") atmosphere = Radtrans(line_species = ['H2O_'+h2o_lines, 'CO2', 'O3'], rayleigh_species = ['N2', 'O2', 'CO2', 'H2', 'He'], continuum_opacities = ['N2-N2', 'N2-O2','O2-O2', 'CO2-CO2','H2-H2','H2-He'], wlen_bords_micron = [0.3, 20], do_scat_emis = True, cloud_species = ['H2O(c)_cd'],) atmosphere.hack_cloud_photospheric_tau = None if cloudfunc is None: cloudfunc = basicclouds transits = [] weights = [] terminatorlons = [] terminatorlats = [] meantransits = np.zeros((len(transittimes),len(atmosphere.freq))) _log(logfile,"Extracting model fields.....") lon = output.variables['lon'][:] lat = output.variables['lat'][:] lons,lats = np.meshgrid(lon,lat) nlon = len(lon) nlat = len(lat) lev = output.variables['lev'][:] tas = np.transpose(output.variables['ta'][:],axes=(0,2,3,1)) h2os = np.transpose(output.variables['hus'][:],axes=(0,2,3,1)) #clds = np.transpose(output.variables['cl'][:],axes=(0,2,3,1)) dqls = np.transpose(output.variables['clw'][:],axes=(0,2,3,1)) for idx,t in enumerate(transittimes): _log(logfile,"Configuring columns for timestamp %d corresponding to timestep %d....."%(t,output.variables['time'][t])) ts = output.variables['ts'][t,...].flatten() ps = output.variables['ps'][t,...].flatten() czen = output.variables['czen'][t,...] ta = np.reshape(tas[t,...],(nlat*nlon,len(lev))) hus = np.reshape(h2os[t,...],(nlat*nlon,len(lev))) #cld = np.reshape(clds[t,...],(nlat*nlon,len(lev))) dql = np.reshape(dqls[t,...],(nlat*nlon,len(lev))) pa = ps[:,np.newaxis]*lev[np.newaxis,:] #pa has shape [nlon*nlat,lev] #Extend down to the surface, using surface pressure, surface temperature, no clouds, and the same #humidity as the bottom vertical layer pa = np.concatenate([pa,ps[:,np.newaxis]],axis=1) hus = np.concatenate([hus,hus[:,-1][:,np.newaxis]],axis=1) ta = np.concatenate([ta,ts[:,np.newaxis]],axis=1) dql = np.concatenate([dql,np.zeros(len(dql))[:,np.newaxis]],axis=1) _log(logfile,"Identifying the terminator....") darkness = 1.0*(output.variables['czen'][t,...]==0.0) terminator_mask = darkness*(np.sqrt(np.gradient(darkness,axis=0)**2+\ np.gradient(darkness,axis=1)**2)>0.0) terminator = np.argwhere(terminator_mask.flatten()) psurf = ps[terminator] temp = ta[terminator,:] h2o = hus[terminator,:] clc = dql[terminator,:] press = pa[terminator,:] tlons = lons.flatten()[terminator] tlats = lats.flatten()[terminator] terminatorlons.append(tlons[:,0]) terminatorlats.append(tlats[:,0]) if ozone is False: a0o3 = 0. a1o3 = 0. aco3 = 0. bo3 = 20000. co3 = 5000. toffo3 = 0.0 elif ozone is True: a0o3 = 0.25 a1o3 = 0.11 aco3 = 0.08 bo3 = 20000. co3 = 5000. toffo3 = 0.25 else: a0o3 = ozone["amount"] a1o3 = ozone["varlat"] aco3 = ozone["varseason"] toffo3 = ozone["seasonoffset"] bo3 = ozone["height"] co3 = ozone["spread"] dt = output.variables['time'][t] / stepsperyear rlats = tlats[:,0]*np.pi/180. o3 = a0o3+a1o3*abs(np.sin(rlats))+aco3*np.sin(rlats)*np.cos(2*np.pi*(dt-toffo3)) widths = np.zeros_like(tlons[:,0]) if num_cpus>1: args = zip(repeat(tlons),repeat(tlats),tlons,tlats) with mp.Pool(num_cpus) as pool: _w = pool.starmap(_awidth,args) for i,w in enumerate(_w): widths[i]=w else: for n in range(len(tlons)): widths[n] = _awidth(tlons,tlats,tlons[n],tlats[n]) weights.append(widths) nterm = len(psurf) _log(logfile,"\n") _log(logfile,"Terminator mask applied; there are %d columns along the terminator."%nterm) transits.append(np.zeros((nterm,len(atmosphere.freq)))) if num_cpus>1: _log(logfile,"\n") _log(logfile,"%d processes will be spun up; if this uses a substantial fraction\n"%num_cpus+ "of the computer's resources, it may become unresponsive for a while.") args = zip(repeat(atmosphere),press,psurf,temp,h2o,clc,repeat(gases_vmr), repeat(gascon),repeat(gravity),repeat(rplanet),repeat(h2o_lines), repeat(cloudfunc),repeat(smooth),repeat(smoothweight),o3, repeat(bo3),repeat(co3),np.arange(nterm)) with mp.Pool(num_cpus) as pool: spectra = pool.starmap(_transitcolumn,args) for i,column in enumerate(spectra): transits[-1][i,:] = column[:] else: _log(logfile,"\n") _log(logfile,"Running in single-process mode; this may take a while.") for i in range(nterm): print(i) transits[-1][i,:] = _transitcolumn(atmosphere,press[i,:],psurf[i], temp[i,:],h2o[i,:],clc[i,:], gases_vmr,gascon,gravity, rplanet,h2o_lines,cloudfunc, smooth,smoothweight,o3[i],bo3,co3,i) _log(logfile,"\n") _log(logfile,"All columns computed! Mean transit spectrum is now being computed.") _log(logfile,"\n") meantransits[idx,:] = np.average(transits[-1],axis=0,weights=widths) _log(logfile,"Repackaging into numpy arrays for export....") maxlen=0 for transit in transits: maxlen=max(maxlen,len(transit[:,0])) nptransits = np.zeros((len(transittimes),maxlen,len(atmosphere.freq))) - 9999999.0 #finite fill value npweights = np.zeros((len(transittimes),maxlen)) npcoords = np.zeros((len(transittimes),maxlen,2)) + np.nan for n,transit in enumerate(transits): nptransits[n,:len(transit[:,0]),:] = transit[:,:] npweights[n,:len(transit[:,0])] = weights[n] npcoords[n,:len(transit[:,0]),0] = terminatorlons[n] npcoords[n,:len(transit[:,0]),1] = terminatorlats[n] return atmosphere,nc.c/atmosphere.freq*1e4,nptransits,npcoords,npweights,meantransits
def _imgcolumn(atmosphere, pressures, surface, temperature, humidity, clouds, gases_vmr, gascon, h2o_lines, gravity, Tstar, Rstar, starseparation,zenith,cloudfunc,smooth,smoothweight,fill, ozone,ozoneheight,ozonespread,num): '''Compute the reflectance/emission spectrum for a column of atmosphere. Parameters ---------- atmosphere : Radtrans.Atmosphere Initialized Atmosphere object pressures : numpy.ndarray Pressure array in hPa, with the surface at the end of the array surface : array-like Wavelength-array giving the surface reflectance, in decimal form. temperature : numpy.ndarray Array of air temperatures, with the surface at the end of the array humidity : numpy.ndarray Specific humidity in the column [kg/kg] clouds : numpy.ndarray Cloud water mass fraction in each cell [kg/kg] gases_vmr : dict Dictionary of component gases and their volume mixing ratios gascon : float Specific gas constant gravity : float Surface gravity in SI units h2o_lines : {'HITEMP', 'EXOMOL'} Line list to use for H2O absorption. Options are 'HITEMP' or 'EXOMOL'. Tstar : float Effective temperature of the parent star [K] Rstar : float Radius of the parent star in centimeters starseparation : float Distance between planet and star in centimeters zenith : float Angle between incident light and atmosphere normal vector in degrees. cloudfunc : function A routine which takes pressure, temperature, and cloud water content as arguments, and returns keyword arguments to be unpacked into calc_flux_transm. smooth : bool Whether or not to smooth humidity and cloud columns. As of Nov 12, 2021, it is recommended that you use smooth=True for well-behaved spectra. This is a conservative smoothing operation, meaning the water and cloud column mass should be conserved--what this does is move some water from the water-rich layers into the layers directly above and below. smoothweight : float The fraction of the water in a layer that should be retained during smoothing. A higher value means the smoothing is less severe. 0.95 is probably the upper limit for well-behaved spectra. fill : float If nonzero, the floor value for water humidity when moist layers are present above dry layers. ozone : float Ozone column amount [cm-STP] ozoneheight : float Altitude of maximum ozone concentration [m] ozonespread : float Width of the ozone gaussian distribution [m] num : int Column number, for diagnostic purposes Returns ------- numpy.ndarray Transmission radius in meters ''' print("Doing column %d"%num) #Define vertical profiles with ghost stratosphere extp = np.append(np.geomspace(1.0e-6,0.5*pressures[0],num=20),pressures) extta = np.append(np.ones(20)*temperature[0],temperature) exthus = np.append(np.zeros(20),humidity) ##THIS BIT BC DRY LAYERS BREAK PRT #firstwater = np.argwhere(exthus>0.)[0][0]+1 #exthus[firstwater:] = np.maximum(exthus[firstwater:],1.0e-5) ##REMOVE ONCE FIXED extcl = np.append(np.zeros(20),clouds) psurf = pressures[-1] if smooth: exthus = _smooth(exthus,xcoords=extp,xN=psurf,centerweight=smoothweight) extcl = _smooth(extcl,xcoords=extp,xN=psurf,centerweight=smoothweight) if fill>0.0: airmass = _airmass(extp[:-1],psurf,extta[:-1],exthus[:-1],gascon,gravity) extcl[:-1] = _fill(extcl[:-1],airmass,minvalue=fill) exthus[:-1] = _fill(exthus[:-1],airmass,minvalue=fill) #Set up atmosphere atmosphere.setup_opa_structure(extp*1.0e-3) MMW = 8.31446261815324/gascon*1.0e3*np.ones_like(extp) #grams per mole #Set absorber fractions mass_fractions = {} for gas in gases_vmr: mmass = smws['m'+gas] mass_fractions[gas] = gases_vmr[gas] * mmass/MMW * (1-exthus) mass_fractions['H2O_'+h2o_lines] = exthus mass_fractions['H2O(c)'] = extcl kwargs = cloudfunc(extp,extta,extcl) #Compute ozone from parameterization mass_fractions['O3'] = np.zeros_like(extp) zfo3 = 100./2.14 zo3t = ozone bo3 = ozoneheight co3 = ozonespread zh = 0.0 zconst = np.exp(-bo3/co3) ga = gravity*0.01 #SI units extdp = np.gradient(extp)*1e2 for k in range(len(extp)-1,0,-1): zh -= extta[k]*gascon/ga*np.log(extp[k-1]/extp[k]) zo3 = -(ozone + ozone*zconst)/(1.+np.exp((zh-bo3)/co3))+zo3t mass_fractions['O3'][k]=zo3*ga/(zfo3*extdp[k]) zo3t -= zo3 mass_fractions['O3'][0] = zo3t * ga / (zfo3 * extdp[0]) if smooth: mass_fractions['O3'] = _smooth(mass_fractions['O3'],xcoords=extp,xN=psurf,centerweight=smoothweight) #Source hi-res surface spectrum from modelspecs, and make sure it matches the model #albedo atmosphere.reflectance = np.interp(nc.c/atmosphere.freq/1e-4,spec.wvl,surface) if zenith<=90.0: #We only need to compute the direct light contribution if the sun is up kwargs["theta_star"]=zenith kwargs["Tstar"]=Tstar kwargs["Rstar"]=Rstar kwargs["semimajoraxis"]=starseparation extta = np.ma.getdata(extta) for gas in mass_fractions: mass_fractions[gas] = np.ma.getdata(mass_fractions[gas]) MMW = np.ma.getdata(MMW) #Compute flux atmosphere.calc_flux(extta, mass_fractions, gravity, MMW, geometry='non-isotropic',**kwargs) wvl = nc.c/atmosphere.freq/1e-4 #wavelength in microns flux = atmosphere.flux*1e6 flux[(flux>10.0)|(flux<0)] = np.nan intensities = makeintensities(wvl,flux*(atmosphere.freq)*1.0e-3/wvl) #1e-3 for cm-2 erg s-1 -> W m-2 #We need to give the spectrum in W m-2 um-1 return flux,intensities,\ atmosphere.stellar_intensity*np.maximum(0.0,np.cos(zenith*np.pi/180.))*np.pi*1e6 #erg cm-2 s-1 Hz-1 def _lognorm(x): v = np.log10(np.maximum(x,1.0e-15)) vmin = np.amin(v) v-=vmin vmax = np.amax(v) v/=vmax return v
[docs] def makeintensities(wvl,fluxes): '''Convert spectrum to (x,y,Y) intensities. Parameters ---------- wvl : array-like Wavelengths in microns fluxes : array-like Spectrum in fluxes (units are arbitrary) Returns ------- (float,float,float) (x,y,Y) tuple ''' intensities = cmatch.makexyz(wvl*1.0e3,fluxes) return intensities
[docs] def orennayarcorrection_col(intensity,lon,lat,sollon,sollat,zenith,observer,albedo,sigma): '''Correct scattering intensity from Lambertian to full Oren-Nayar. Parameters ---------- intensity : array-like or float Intensity to correct lon : array-like or float Column(s) longitude in degrees lat : array-like or float Column(s) latitude in degrees sollon : float Substellar longitude sollat : float Substellar latitude zenith : array-like or float Solar zenith angle(s) in degrees observer : tuple (lat,lon) tuple of sub-observer coordinates albedo : array-like or float Scattering surface reflectivity (0--1) sigma : array-like or float Scattering surface roughness. 0.0 is Lambertian, 0.97 is the maximum energy-conserving roughness. 0.25-0.3 is appropriate for many planetary bodies. Returns ------- array-like Corrected intensity of the same shape as the input intensity ''' theta = zenith*np.pi/180.0 rlatz = sollat*np.pi/180. rlonz = sollon*np.pi/180. rlons = lon*np.pi/180. rlats = lat*np.pi/180. phi = np.arctan2(-np.cos(rlatz)*np.sin(rlonz-rlons), -(np.sin(rlatz)*np.cos(rlats)-np.cos(rlatz)*np.sin(rlats)*np.cos(rlonz-rlons))) if phi<0: phi+=2*np.pi rlono = observer[1]*np.pi/180. rlato = observer[0]*np.pi/180. otheta = np.arccos(np.sin(rlats)*np.sin(rlato)+np.cos(rlats)*np.cos(rlato)*np.cos(rlono-rlons)) if otheta>np.pi/2.: return 0.0 ophi = np.arctan2(-np.cos(rlato)*np.sin(rlono-rlons), -(np.sin(rlato)*np.cos(rlats)-np.cos(rlato)*np.sin(rlats)*np.cos(rlono-rlons))) if ophi<0: ophi+=2*np.pi a = max(theta,otheta) b = min(theta,otheta) dphi = phi-ophi c1 = 1 - 0.5*sigma**2/(sigma**2+0.33) c2 = 0.45*(sigma**2/(sigma**2+0.05))*(np.sin(a)-(2*b/np.pi)**2*(np.cos(dphi)<0)) c3 = 0.125*(sigma**2/(sigma**2+0.09))*(4*a*b/np.pi**2)**2 L1coeff = (c1 + np.cos(dphi)*min(10.,np.tan(b))*c2 +\ (1-abs(np.cos(dphi))*min(10.,np.tan((a+b)/2.)))*c3) L2coeff = albedo*(0.17*(sigma**2/(sigma**2+0.13))*(1-np.cos(dphi)*(2*b/np.pi)**2)) L = L1coeff+L2coeff return intensity*L
[docs] def orennayarcorrection(intensity,lon,lat,sollon,sollat,zenith,observer,albedo,sigma): '''Correct scattering intensity from Lambertian to full Oren-Nayar. Parameters ---------- intensity : array-like or float Intensity to correct lon : array-like or float Column(s) longitude in degrees lat : array-like or float Column(s) latitude in degrees sollon : float Substellar longitude sollat : float Substellar latitude zenith : array-like or float Solar zenith angle(s) in degrees observer : tuple (lat,lon) tuple of sub-observer coordinates albedo : array-like or float Scattering surface reflectivity (0--1) sigma : array-like or float Scattering surface roughness. 0.0 is Lambertian, 0.97 is the maximum energy-conserving roughness. 0.25-0.3 is appropriate for many planetary bodies. Returns ------- array-like Corrected intensity of the same shape as the input intensity ''' theta = zenith*np.pi/180.0 rlatz = sollat*np.pi/180. rlonz = sollon*np.pi/180. rlons = lon*np.pi/180. rlats = lat*np.pi/180. phi = np.arctan2(-np.cos(rlatz)*np.sin(rlonz-rlons), -(np.sin(rlatz)*np.cos(rlats)-np.cos(rlatz)*np.sin(rlats)*np.cos(rlonz-rlons))) phi[phi<0]+=2*np.pi rlono = observer[1]*np.pi/180. rlato = observer[0]*np.pi/180. otheta = np.arccos(np.sin(rlats)*np.sin(rlato)+np.cos(rlats)*np.cos(rlato)*np.cos(rlono-rlons)) ophi = np.arctan2(-np.cos(rlato)*np.sin(rlono-rlons), -(np.sin(rlato)*np.cos(rlats)-np.cos(rlato)*np.sin(rlats)*np.cos(rlono-rlons))) ophi[ophi<0]+=2*np.pi a = max(theta,otheta) b = min(theta,otheta) dphi = phi-ophi c1 = 1 - 0.5*sigma**2/(sigma**2+0.33) c2 = 0.45*(sigma**2/(sigma**2+0.05))*(np.sin(a)-(2*b/np.pi)**2*(np.cos(dphi)<0)) c3 = 0.125*(sigma**2/(sigma**2+0.09))*(4*a*b/np.pi**2)**2 L1coeff = (c1 + np.cos(dphi)*min(10.,np.tan(b))*c2 +\ (1-abs(np.cos(dphi))*min(10.,np.tan((a+b)/2.)))*c3) L2coeff = albedo*(0.17*(sigma**2/(sigma**2+0.13))*(1-np.cos(dphi)*(2*b/np.pi)**2)) L = L1coeff+L2coeff L[otheta>np.pi/2.] = 0.0 return intensity*L
[docs] def makecolors(intensities,gamma=True,colorspace="sRGB"): '''Convert (x,y,Y) intensities to RGB values. Uses CIE color-matching functions and a wide-gamut RGB colorspace to convert XYZ-coordinate color intensities to RGB intensities. Parameters ---------- intensities : array-like Last index must have length 3--array of (x,y,Y) intensities Returns ------- array-like (N,3) RGB color values. ''' ogshape = intensities.shape flatshape = np.product(ogshape[:-1]) flatintensities = np.reshape(intensities,(flatshape,3)) #flatintensities[:,2] -= np.nanmin(flatintensities[:,2]) #So we have 0-F range #Is the above line necessary? It's the source of discrepancy with specs2rgb. norms = flatintensities[:,2]/np.nanmax(flatintensities[:,2]) colors = np.zeros((flatshape,3)) for k in range(flatshape): colors[k,:] = cmatch.xyz2rgb(flatintensities[k,0],flatintensities[k,1], norms[k],gamut=colorspace) colors /= np.nanmax(colors) colors = np.reshape(colors,ogshape) if gamma is True: colors[colors<0.0031308] = 12.92*colors[colors<0.0031308] colors[colors>=0.0031308] = 1.055*colors[colors>=0.0031308]**(1./2.4)-0.055 elif gamma is not None: colors = colors**(1./gamma) return colors
[docs] def image(output,imagetimes,gases_vmr, obsv_coords, gascon=287.0, gravity=9.80665, Tstar=5778.0,Rstar=1.0,orbdistances=1.0,h2o_lines='HITEMP', num_cpus=4,cloudfunc=None,smooth=True,smoothweight=0.50,filldry=0.0, stellarspec=None,ozone=False,stepsperyear=11520.,logfile=None,debug=False, orennayar=True,sigma=None,allforest=False,baremountainz=5.0e4, colorspace="sRGB",gamma=True,consistency=True,vegpowerlaw=1.0): '''Compute reflection+emission spectra for snapshot output This routine computes the reflection+emission spectrum for the planet at each indicated time. Note that deciding what the observer coordinates ought to be may not be a trivial operation. Simply setting them to always be the same is fine for a 1:1 synchronously-rotating planet, where the insolation pattern never changes. But for an Earth-like rotator, you will need to be mindful of rotation rate and the local time when snapshots are written. Perhaps you would like to see how things look as the local time changes, as a geosynchronous satellite might observe, or maybe you'd like to only observe in secondary eclipse or in quadrature, and so the observer-facing coordinates may not be the same each time. Parameters ---------- output : ExoPlaSim snapshot output Preferably opened with :py:func:`exoplasim.gcmt.load`. imagetimes : list(int) List of time indices at which the image should be computed. gases_vmr : dict Dictionary of gas species volume mixing ratios for the atmosphere obsv_coords : numpy.ndarray (3D) List of observer (lat,lon) coordinates for each observing time. First axis is time, second axis is for each observer; the third axis is for lat and lon. Should have shape (time,observers,lat-lon). These are the surface coordinates that are directly facing the observer. gascon : float, optional Specific gas constant gravity : float, optional Surface gravity in SI units Tstar : float, optional Effective temperature of the parent star [K] Rstar : float, optional Radius of the parent star in solar radii orbdistances : float or numpy.ndarray, optional Distance between planet and star in AU h2o_lines : {'HITEMP','EXOMOL'}, optional Either 'HITEMP' or 'EXOMOL'--the line list from which H2O absorption should be sourced num_cpus : int, optional The number of CPUs to use cloudfunc : function, optional A routine which takes pressure, temperature, and cloud water content as arguments, and returns keyword arguments to be unpacked into calc_flux_transm. If not specified, `basicclouds` will be used. smooth : bool, optional Whether or not to smooth humidity and cloud columns. As of Nov 12, 2021, it is recommended that you use smooth=True for well-behaved spectra. This is a conservative smoothing operation, meaning the water and cloud column mass should be conserved--what this does is move some water from the water-rich layers into the layers directly above and below. smoothweight : float, optional The fraction of the water in a layer that should be retained during smoothing. A higher value means the smoothing is less severe. 0.95 is probably the upper limit for well-behaved spectra. filldry : float, optional If nonzero, the floor value for water humidity when moist layers are present above dry layers. Columns will be adjusted in a mass-conserving manner with excess humidity accounted for in layers *above* the filled layer, such that total optical depth from TOA is maintained at the dry layer. stellarspec : array-like (optional) A stellar spectrum measured at the wavelengths in surfacespecs.wvl. If None, a blackbody will be used. ozone : bool or dict, optional True/False/dict. Whether or not forcing from stratospheric ozone should be included. If a dict is provided, it should contain the keys "height", "spread", "amount","varlat","varseason", and "seasonoffset", which correspond to the height in meters of peak O3 concentration, the width of the gaussian distribution in meters, the baseline column amount of ozone in cm-STP, the latitudinal amplitude, the magnitude of seasonal variation, and the time offset of the seasonal variation in fraction of a year. The three amounts are additive. To set a uniform, unvarying O3 distribution, ,place all the ozone in "amount", and set "varlat" and "varseason" to 0. stepsperyear : int or float, optional Number of timesteps per sidereal year. Only used for computing ozone seasonality. orennayar : bool, optional If True, compute true-colour intensity using Oren-Nayar scattering instead of Lambertian scattering. Most solar system bodies do not exhibit Lambertian scattering. sigma : float, optional If not None and `orennayar` is `True`, then this sets the roughness parameter for Oren-Nayar scattering. `sigma=0` is the limit of Lambertian scattering, while `sigma=0.97` is the limit for energy conservation. `sigma` is the standard deviation of the distribution of microfacet normal angles relative to the mean, normalized such that `sigma=1.0` would imply truly isotropic microfacet distribution. If sigma is None (default), then sigma is determined based on the surface type in a column and whether clouds are present, using 0.4 for ground, 0.1 for ocean, 0.9 for snow/ice, and 0.95 for clouds. allforest : bool, optional If True, force all land surface to be forested. baremountainz : float, optional If vegetation is present, the geopotential above which mountains become bare rock instead of eroded vegetative regolith. Functionally, this means gray rock instead of brown/tan ground. colorspace : str or np.ndarray(3,3) Color gamut to be used. For available built-in color gamuts, see colormatch.colorgamuts. gamma : bool or float, optional If True, use the piecewise gamma-function defined for sRGB; otherwise if a float, use rgb^(1/gamma). If None, gamma=1.0 is used. consistency : bool, optional If True, force surface albedo to match model output vegpowerlaw : float, optional Scale the apparent vegetation fraction by a power law. Setting this to 0.1, for example, will increase the area that appears partially-vegetated, while setting it to 1.0 leaves vegetation unchanged. Returns ------- Atmosphere, numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray pRT Atmosphere object, wavelength in microns, Numpy array with dimensions (ntimes,nlat,nlon,nfreq), where ntimes is the number of output times, and nfreq is the number of frequencies in the spectrum, longitudes, latitudes, and an array with dimensions (ntimes,nfreq) corresponding to disk-averaged spectra, with individual contributions weighted by visibility and projected area. ''' _log(logfile,"===================================") _log(logfile,"| ExoPlaSim->petitRADTRANS Engine |") _log(logfile,"| v1.0, Adiv Paradise (c) 2021 |") _log(logfile,"===================================") _log(logfile,"\n") _log(logfile,"-------------Direct Imager----------") _log(logfile,"\n") #Compute zenith angle from czen #Figure out how to output spectra #Get surface type from model output #Turn off reflection for night-time grid cells gravity *= 100.0 #SI->CGS atmosphere = Radtrans(line_species = ['H2O_'+h2o_lines, 'CO2', 'O3'], rayleigh_species = ['N2', 'O2', 'CO2', 'H2', 'He'], continuum_opacities = ['N2-N2', 'N2-O2','O2-O2', 'CO2-CO2','H2-H2','H2-He'], wlen_bords_micron = [0.3, 20], do_scat_emis = True, cloud_species = ['H2O(c)_cd'],) if cloudfunc is None: cloudfunc = basicclouds planckh = 6.62607015e-34 boltzk = 1.380649e-23 cc = 2.99792458e8 if stellarspec is None: SIwvl = spec.wvl*1.0e-6 #um->m stellarspec = 1.0e-6 * 2*planckh*cc**2/SIwvl**5 \ /(np.exp(planckh*cc/(SIwvl*boltzk*Tstar))-1) # W sr-1 m-2 um-1 lon = output.variables['lon'][:] lat = output.variables['lat'][:] lons,lats = np.meshgrid(lon,lat) nlon = len(lon) nlat = len(lat) ncols = nlon*nlat wvl = nc.c/atmosphere.freq/1e-4 visible = np.argmin(abs(wvl-0.83)) visfreq = atmosphere.freq[:visible] viswvl = wvl[:visible] images = np.zeros((len(imagetimes),nlat*nlon,len(atmosphere.freq))) influxes = np.zeros((len(imagetimes),nlat*nlon,len(atmosphere.freq))) photos = np.zeros((len(imagetimes),obsv_coords.shape[1]+1,nlat*nlon,3)) meanimages = np.zeros((len(imagetimes),obsv_coords.shape[1],len(atmosphere.freq))) lev = output.variables['lev'][:] tas = np.transpose(output.variables['ta'][:],axes=(0,2,3,1)) h2os = np.transpose(output.variables['hus'][:],axes=(0,2,3,1)) #clds = np.transpose(output.variables['cl'][:],axes=(0,2,3,1)) dqls = np.transpose(output.variables['clw'][:],axes=(0,2,3,1)) lsm = output.variables['lsm'][0,...].flatten() sea = 1.0-lsm #1 if sea, 0 if land ilons = lons.flatten() ilats = lats.flatten() lt1 = np.zeros(len(lat)+1) lt1[0] = 90 for n in range(0,len(lat)-1): lt1[n+1] = 0.5*(lat[n]+lat[n+1]) lt1[-1] = -90 dln = np.diff(lon)[0] ln1 = np.zeros(len(lon)+1) ln1[0] = -dln for n in range(0,len(lon)-1): ln1[n+1] = 0.5*(lon[n]+lon[n+1]) ln1[-1] = 360.0-dln lt1*=np.pi/180.0 ln1*=np.pi/180.0 darea = np.zeros((nlat,nlon)) for jlat in range(0,nlat): for jlon in range(0,nlon): dln = ln1[jlon+1]-ln1[jlon] darea[jlat,jlon] = abs(np.sin(lt1[jlat])-np.sin(lt1[jlat+1]))*abs(dln) darea = darea.flatten() surfaces = [spec.modelspecs["groundblend"]*0.01, spec.basespecs["USGSocean"]*0.01, spec.modelspecs["iceblend"]*0.01, spec.basespecs["USGSaspenforest"]*0.01, spec.basespecs["dunesand"]*0.01, 0.5*(spec.basespecs["brownsand"]+spec.basespecs["yellowloam"])*0.01] if "veglai" in output.variables: sfcalbedo = surfaces[1][np.newaxis,:]*sea[:,np.newaxis] + surfaces[5][np.newaxis,:]*(1-sea)[:,np.newaxis] else: sfcalbedo = surfaces[1][np.newaxis,:]*sea[:,np.newaxis] + surfaces[0][np.newaxis,:]*(1-sea)[:,np.newaxis] if orennayar and sigma is None: sigmas = [0.4,0.1,0.9,0.95] #roughnesses for ground,ocean,ice/snow,and clouds sfcsigmas = sigmas[1]*lsm + sigmas[0]*(1-lsm) if debug: albedomap = np.zeros((len(imagetimes),nlon*nlat,len(surfaces[0]))) sigmamap = np.zeros((len(imagetimes),nlon*nlat)) broadreflmap = np.zeros((len(imagetimes),nlon*nlat)) intensities = np.zeros_like(photos) #sfcalbedo = sfcalbedo.flatten() projectedareas = np.zeros((len(imagetimes),obsv_coords.shape[1],len(ilons))) observers = np.zeros((obsv_coords.shape[1],2)) for idx,t in enumerate(imagetimes): ts = output.variables['ts'][t,...].flatten() ps = output.variables['ps'][t,...].flatten() czen = output.variables['czen'][t,...] ta = np.reshape(tas[t,...],(nlat*nlon,len(lev))) hus = np.reshape(h2os[t,...],(nlat*nlon,len(lev))) #cld = np.reshape(clds[t,...],(nlat*nlon,len(lev))) dql = np.reshape(dqls[t,...],(nlat*nlon,len(lev))) pa = ps[:,np.newaxis]*lev[np.newaxis,:] #pa has shape [nlon*nlat,lev] #Extend down to the surface, using surface pressure, surface temperature, no clouds, and the same #humidity as the bottom vertical layer pa = np.ma.getdata(np.concatenate([pa,ps[:,np.newaxis]],axis=1)) hus = np.ma.getdata(np.concatenate([hus,hus[:,-1][:,np.newaxis]],axis=1)) ta = np.ma.getdata(np.concatenate([ta,ts[:,np.newaxis]],axis=1)) dql = np.ma.getdata(np.concatenate([dql,np.zeros(len(dql))[:,np.newaxis]],axis=1)) try: starseparation = orbdistances[idx] except: starseparation = orbdistances if ozone is False: a0o3 = 0. a1o3 = 0. aco3 = 0. bo3 = 20000. co3 = 5000. toffo3 = 0.0 elif ozone is True: a0o3 = 0.25 a1o3 = 0.11 aco3 = 0.08 bo3 = 20000. co3 = 5000. toffo3 = 0.25 else: a0o3 = ozone["amount"] a1o3 = ozone["varlat"] aco3 = ozone["varseason"] toffo3 = ozone["seasonoffset"] bo3 = ozone["height"] co3 = ozone["spread"] dt = output.variables['time'][t] / stepsperyear rlats = ilats*np.pi/180. o3 = a0o3+a1o3*abs(np.sin(rlats))+aco3*np.sin(rlats)*np.cos(2*np.pi*(dt-toffo3)) zenith = np.arccos(czen)*180./np.pi darkness = 1.0*(czen==0.0) nightside = darkness*(np.sqrt(np.gradient(darkness,axis=0)**2+\ np.gradient(darkness,axis=1)**2)==0.0) zenith[nightside>0.5] = 91.0 zenith[nightside<=0.5] = np.minimum(zenith[nightside<=0.5],90.0-360.0/nlon*0.5) #dawn/dusk angle due to finite resolution zenith = zenith.flatten() subsolar = np.argwhere(czen==np.max(czen)) lonsmax = [] latsmax = [] for ang in subsolar: lonsmax.append(lon[ang[1]]) latsmax.append(lat[ang[0]]) sollon = np.mean(np.unique(lonsmax)) #substellar longitude sollat = np.mean(np.unique(latsmax)) #substellar latitude albedo = output.variables['alb'][t,...].flatten() ice = output.variables['sit'][t,...]+output.variables['snd'][t,...] ice = ice.flatten() #icemap = 2.0*(ice>0.001) #1 mm probably not enough to make everything white ice = np.minimum(ice/0.02,1.0) #0-1 with a cap at 2 cm of snow snow = 1.0*(output.variables['snd'][t,...].flatten()>0.02) if allforest: forest = np.ones_like(ice) desertf = np.zeros_like(ice) mntf = np.zeros_like(ice) else: if "veglai" in output.variables: #Use dune sand for deserts and bare rock for mountaintops vlai = output.variables['veglai'][t,...] forest = (np.exp(-vlai)*vlai+(1.0-np.exp(-vlai))*(1.0-np.exp(-0.5*vlai))**vegpowerlaw).flatten() #Fraction of PAR that is absorbed by vegetation desertf = ((output.variables['lsm'][t,...]>0.5)*1.0*(output.variables['vegsoilc'][t,...]<0.01)*(output.variables['mrso'][t,...]<0.01)).flatten() mntf = 1.0*(output.variables['netz'][t,...]>baremountainz).flatten() else: forest = np.zeros_like(ice) desertf = np.zeros_like(ice) mntf = np.zeros_like(ice) surfspecs = np.copy(sfcalbedo) surfspecs[desertf>0.5] = surfaces[4] surfspecs[mntf>0.5] = surfaces[0] ice[forest>0] *= 1 - 0.82*forest[forest>0] forest[ice>0] *= 0.82*forest[ice>0] albedo[forest>0] = (1-forest[forest>0])*albedo[forest>0] + forest[forest>0]*0.3 bare = 1-(ice+forest) #sfctype = np.maximum(sea,icemap).astype(int) # Sea with no ice: 1 # Sea with ice: 2 # Land with no ice: 0 (since both are 0) # Land with ice: 2 #surfaces = [] #for n in range(len(sfctype)): # surfaces.append({'type':sfctype[n],'albedo':albedo[n]}) surfspecs = (surfspecs*(1-output.variables['sic'][t,...].flatten())[:,np.newaxis]+ surfaces[2][np.newaxis,:]*(output.variables['sic'][t,...].flatten())[:,np.newaxis]) surfspecs = (surfspecs*bare[:,np.newaxis] + surfaces[2][np.newaxis,:]*ice[:,np.newaxis]+ surfaces[3][np.newaxis,:]*forest[:,np.newaxis]) clt = output.variables['clt'][t,...].flatten() if orennayar and sigma is None: surfsigmas = (sfcsigmas*(1-output.variables['sic'][t,...].flatten())+ sigmas[2]*(output.variables['sic'][t,...].flatten())) surfsigmas = (surfsigmas*(1-snow) + sigmas[2]*snow) sigma = (surfsigmas*(1-clt) + clt*sigmas[3]) elif orennayar and sigma is not None: sigma = np.ones_like(ice)*sigma if consistency: for n in range(len(albedo)): bol_alb = np.trapz(stellarspec*surfspecs[n,:],x=spec.wvl)/ \ np.trapz(stellarspec,x=spec.wvl) fudge_factor = albedo[n]/bol_alb surfspecs[n,:] *= fudge_factor if debug: albedomap[idx,:,:] = surfspecs[:,:] sigmamap[idx,...] = sigma[:] viewangles = [] for idv in range(obsv_coords.shape[1]): coord = obsv_coords[idx,idv,:] view = _adistance(ilons,ilats,coord[1],coord[0]) view[view>=np.pi/2.] = np.pi/2. viewangles.append(view) observers[idv,0] = coord[0] observers[idv,1] = coord[1] #viewangles = _adistance(ilons,ilats,obsv_coords[idx][1],obsv_coords[idx][0]) for idv in range(projectedareas.shape[1]): view = viewangles[idv] projectedareas[idx,idv,:][view>=np.pi/2] = 0.0 projectedareas[idx,idv,:][view<np.pi/2] = np.cos(view[view<np.pi/2])*darea[view<np.pi/2] if num_cpus>1: args = zip(repeat(atmosphere),pa,surfspecs,ta,hus,dql,repeat(gases_vmr), repeat(gascon),repeat(h2o_lines),repeat(gravity), repeat(Tstar),repeat(Rstar*nc.r_sun),repeat(starseparation*nc.AU), zenith,repeat(cloudfunc),repeat(smooth),repeat(smoothweight),repeat(filldry), o3,repeat(bo3),repeat(co3),np.arange(ncols)) with mp.Pool(num_cpus) as pool: spectra = pool.starmap(_imgcolumn,args) for i,column in enumerate(spectra): images[idx, i,:] = column[0][:] photos[idx,0,i,:] = column[1][:] influxes[idx,i,:] = column[2][:] inrad = influxes[idx,:,:visible] outrad = images[idx,:,:visible] reflectivity = outrad/inrad reflectivity[inrad==0] = 0.0 print(inrad.shape,visfreq.shape) influx = inrad*visfreq[np.newaxis,:] print(influx.shape,reflectivity.shape) convolved = influx*reflectivity broadrefl = np.zeros(convolved.shape[:-1]) for k in range(broadrefl.shape[0]): #mask = ~np.isnan(convolved[k]) try: broadrefl[k] = np.trapz(convolved[k],x=viswvl,axis=1)/np.trapz(influx,x=viswvl,axis=1) except: broadrefl[k] = albedo[k]*(1-clt[k]) + clt[k]*0.9 if orennayar and sigma.max()>0.0: for idv in range(observers.shape[0]): args = zip(photos[idx,0,:,2].flatten(),ilons,ilats, repeat(sollon),repeat(sollat),zenith, repeat(observers[idv,:]),broadrefl,sigma) with mp.Pool(num_cpus) as pool: correctedI = pool.starmap(orennayarcorrection_col,args) photos[idx,idv+1,:,2] = correctedI[:] photos[idx,idv+1,:,:2] = photos[idx,0,:,:2] else: for i in range(ncols): column = _imgcolumn(atmosphere,pa[i,:],surfspecs[i,:], ta[i,:],hus[i,:],dql[i,:], gases_vmr,gascon,h2o_lines, gravity,Tstar,Rstar*nc.r_sun, starseparation*nc.AU,zenith[i], cloudfunc,smooth,smoothweight,filldry,o3[i], bo3,co3,i) images[idx, i,:] = column[0][:] photos[idx,0,i,:] = column[1][:] influxes[idx,i,:] = column[2][:] inrad = influxes[idx,:,:visible] outrad = images[idx,:,:visible] reflectivity = outrad/inrad influx = inrad*visfreq[np.newaxis,:] convolved = influx*reflectivity broadrefl = np.zeros(convolved.shape[:-1]) for k in range(broadrefl.shape[0]): #mask = ~np.isnan(convolved[k]) try: broadrefl[k] = np.trapz(convolved[k],x=viswvl,axis=1)/np.trapz(influx,x=viswvl,axis=1) except: broadrefl[k] = albedo[k]*(1-clt[k]) + clt[k]*0.9 if orennayar and sigma.max()>0.0: for idv in range(observers.shape[0]): photos[idx,idv+1,:,2] = orennayarcorrection(photos[idx,0,:,2],ilons,ilats,sollon,sollat, zenith,observers[idv,:],broadrefl,sigma) photos[idx,idv+1,:,:2] = photos[idx,0,:,:2] if debug: broadreflmap[idx,...] = broadrefl[:] intensities[idx,...] = photos[idx,...] for idv in range(photos.shape[1]): photos[idx,idv,...] = makecolors(photos[idx,idv,...],gamma=gamma,colorspace=colorspace) #Investigate why splitting intensities and colors instead of specs2rgb produces different results try: for idv in range(projectedareas.shape[1]): view = projectedareas[idx,idv,:] print("Processing view %d"%idv) meanimages[idx,idv,:] = np.ma.average(np.ma.MaskedArray(images[idx,...], mask=np.isnan(images[idx,...])),axis=0,weights=view) except BaseException as err: print("Error computing disk-averaged means") print(err) ts = output.variables['ts'][0,...].flatten() ps = output.variables['ps'][0,...].flatten() czen = output.variables['czen'][0,...] ta = np.reshape(tas[0,...],(nlat*nlon,len(lev))) hus = np.reshape(h2os[0,...],(nlat*nlon,len(lev))) #cld = np.reshape(clds[t,...],(nlat*nlon,len(lev))) dql = np.reshape(dqls[0,...],(nlat*nlon,len(lev))) pa = ps[:,np.newaxis]*lev[np.newaxis,:] #pa has shape [nlon*nlat,lev] #Extend down to the surface, using surface pressure, surface temperature, no clouds, and the same #humidity as the bottom vertical layer pa = np.concatenate([pa,ps[:,np.newaxis]],axis=1) hus = np.concatenate([hus,hus[:,-1][:,np.newaxis]],axis=1) ta = np.concatenate([ta,ts[:,np.newaxis]],axis=1) dql = np.concatenate([dql,np.zeros(len(dql))[:,np.newaxis]],axis=1) try: starseparation = orbdistances[idx] except: starseparation = orbdistances if ozone is False: a0o3 = 0. a1o3 = 0. aco3 = 0. bo3 = 20000. co3 = 5000. toffo3 = 0.0 elif ozone is True: a0o3 = 0.25 a1o3 = 0.11 aco3 = 0.08 bo3 = 20000. co3 = 5000. toffo3 = 0.25 else: a0o3 = ozone["amount"] a1o3 = ozone["varlat"] aco3 = ozone["varseason"] toffo3 = ozone["seasonoffset"] bo3 = ozone["height"] co3 = ozone["spread"] dt = output.variables['time'][0] / stepsperyear rlats = ilats*np.pi/180. o3 = a0o3+a1o3*abs(np.sin(rlats))+aco3*np.sin(rlats)*np.cos(2*np.pi*(dt-toffo3)) albedo = output.variables['alb'][0,...].flatten() ice = output.variables['sit'][0,...]+output.variables['snd'][0,...] ice = ice.flatten() #icemap = 2.0*(ice>0.001) #1 mm probably not enough to make everything white ice = np.minimum(ice/0.02,1.0) #0-1 with a cap at 2 cm of snow snow = 1.0*(output.variables['snd'][0,...].flatten()>0.02) #absorbed by vegetation forest = np.zeros_like(ice) desertf = np.zeros_like(ice) mntf = np.zeros_like(ice) ice[forest>0] *= 1 - 0.82*forest[forest>0] forest[ice>0] *= 0.82*forest[ice>0] bare = 1-(ice+forest) #sfctype = np.maximum(sea,icemap).astype(int) # Sea with no ice: 1 # Sea with ice: 2 # Land with no ice: 0 (since both are 0) # Land with ice: 2 #surfaces = [] #for n in range(len(sfctype)): # surfaces.append({'type':sfctype[n],'albedo':albedo[n]}) surfspecs = (sfcalbedo*(1-output.variables['sic'][0,...].flatten())[:,np.newaxis]+ surfaces[2][np.newaxis,:]*(output.variables['sic'][0,...].flatten())[:,np.newaxis]) surfspecs = (surfspecs*bare[:,np.newaxis] + surfaces[2][np.newaxis,:]*ice[:,np.newaxis]+ surfaces[3][np.newaxis,:]*forest[:,np.newaxis]) clt = output.variables['clt'][0,...].flatten() for n in range(len(albedo)): bol_alb = np.trapz(stellarspec*surfspecs[n,:],x=spec.wvl)/ \ np.trapz(stellarspec,x=spec.wvl) fudge_factor = albedo[n]/bol_alb surfspecs[n,:] *= fudge_factor column = _imgcolumn(atmosphere,pa[0,:],surfspecs[0,:],ta[0,:],hus[0,:],dql[0,:], gases_vmr,gascon,h2o_lines,gravity,Tstar,Rstar*nc.r_sun, starseparation*nc.AU,0.0,cloudfunc,smooth,smoothweight,filldry,o3[0], bo3,co3,-1) if atmosphere.stellar_intensity is None: atmosphere.stellar_intensity = column[2]*1.0e-6/np.pi images = np.reshape(images,(len(imagetimes),nlat,nlon,len(atmosphere.freq))) photos = np.reshape(photos,(len(imagetimes),obsv_coords.shape[1]+1,nlat,nlon,3)) if debug: projectedareas = np.reshape(projectedareas,(len(imagetimes),obsv_coords.shape[1],nlat,nlon)) albedomap = np.reshape(albedomap,(len(imagetimes),nlat,nlon,len(surfaces[0]))) sigmamap = np.reshape(sigmamap,(len(imagetimes),nlat,nlon)) broadreflmap = np.reshape(broadreflmap,(len(imagetimes),nlat,nlon)) intensities = np.reshape(intensities,photos.shape) return atmosphere,nc.c/atmosphere.freq*1e4,images,photos,lon,lat,meanimages,\ albedomap,projectedareas,broadreflmap,sigmamap,intensities else: return atmosphere,nc.c/atmosphere.freq*1e4,images,photos,lon,lat,meanimages
_postmetadata = {"images":["image_spectra_map","erg cm-2 s-1 Hz-1"], "spectra":[["image_spectrum_avg","erg cm-2 s-1 Hz-1"], ["transit_spectrum_avg","km"]], "colors":["true_color_image","RGB"], "transits":["transit_spectra_map","km"], "weights":["transit_column_width","degrees"], "lat":["latitude","degrees"], "lon":["longitude","degrees"], "wvl":["wavelength","microns"], "time":["obsv_time_index","indices"], "albedomap":["input_albedo_map","reflectivity"], "reflmap":["empirical_albedo_map","reflectivity"], "sigmamap":["diffusive_roughness","nondimensional"], "Intensities":["xyY_intensities","nondimensional"]} def _writecsvs(filename,variables,extension=None,logfile=None): '''Write CSV output files Files are placed in a subdirectory named from the filename naming pattern (stripping off the extension). Parameters ---------- filename : str Filename pattern variables : dict Dictionary of variable data arrays meta : dict Dictionary of metadata fields for associated variables extension : str, optional File extension to use for individual files logfile : str or None, optional If None, log diagnostics will get printed to standard output. Otherwise, the log file to which diagnostic output should be written. Returns ------- list, str List of paths to output files, and the containing directory. ''' idx = filename[::-1].find(".")+1 #Index of last period separator (negative) dirname = filename[:-idx] if dirname[-4:]==".tar": dirname = dirname[:-4] idx+=4 if extension is None: extension = filename[-idx:] fname = dirname if "/" in dirname: fname = dirname.split("/")[-1] os.system("mkdir %s"%dirname) #Create a subdirectory that just omits the file extension files = [] if "images" in variables: dimvars = ["lat","lon","wvl","time"] else: dimvars = ["wvl","time"] keyvars = list(variables.keys()) for var in dimvars: outname = "%s/%s_%s%s"%(dirname,fname,var,extension) np.savetxt(outname,variables[var].astype("float32"), header=(str(len(variables[var]))+",|||," +','.join(_postmetadata[var])),delimiter=',') keyvars.remove(var) files.append(outname) maxlen = 0 for var in keyvars: maxlen = max(maxlen,len("%s/%s_%s%s"%(dirname,fname,var,extension))) maxlen+=1 for var in keyvars: #This creates e.g. most_output/most_output_ts.csv if filename was most_output.csv shape = variables[var].shape dim2 = shape[-1] dim1 = int(np.prod(shape[:-1])) var2d = np.reshape(variables[var],(dim1,dim2)) #np.savetxt can only handle 2 dimensions outname = "%s/%s_%s%s"%(dirname,fname,var,extension) if var=="spectra": if "images" in keyvars: meta = _postmetadata[var][0] else: meta = _postmetadata[var][1] else: meta = _postmetadata[var] try: np.savetxt(outname,var2d.astype("float64"), header=(','.join(np.array(shape).astype(str))+",|||," +','.join(meta)),delimiter=',') except: print(",".join(np.array(shape).astype(str))) print(",|||,") print(meta) print(','.join(meta)) print(','.join(np.array(shape).astype(str))+",|||," +','.join(meta)) raise #The original shape of the array to which it should be reshaped on unpacking is in the header, #with the actual metadata separated from the shape by '|||' files.append(outname) try: writeline = "Writing %8s to %"+str(maxlen)+"s\t....... %d timestamps" _log(logfile,writeline%(var,outname,variables[var].shape[0])) except: _log(logfile,"Writing %8s to %s"%(var,filename)) return files,dirname+"/" def _csv(dataset,filename="most_output.tar.gz",logfile=None,extracompression=False): '''Write a dataset to CSV/TXT-type output, optionally compressed. If a tarball format (e.g. \*.tar or \*.tar.gz) is used, output files will be packed into a tarball. gzip (.gz), bzip2 (.bz2), and lzma (.xz) compression types are supported. If a tarball format is not used, then accepted file extensions are .csv, .txt, or .gz. All three will produce a directory named following the filename pattern, with one file per variable in the directory. If the .gz extension is used, NumPy will compress each output file using gzip compression. Files will only contain 2D variable information, so the first N-1 dimensions will be flattened. The original variable shape is included in the file header (prepended with a # character) as the first items in a comma-separated list, with the first non-dimension item given as the '|||' placeholder. On reading variables from these files, they should be reshaped according to these dimensions. This is true even in tarballs (which contain CSV files). Parameters ---------- dataset : dict A dictionary of outputs as generated from :py:func:`pyburn.dataset()<exoplasim.pyburn.dataset>` filename : str, optional Path to the output file that should be written. This will be parsed to determine output type. logfile : str or None, optional If None, log diagnostics will get printed to standard output. Otherwise, the log file to which diagnostic output should be written. extracompression : bool, optional If True, then component files in tarball outputs will be compressed individually with gzip, instead of being plain-text CSV files. Returns ------- tuple or str If non-tarball output was used, a tuple containing a list of paths to output files, and a string giving the name of the output directory. If tarball output was used, a relative path to the tarball. ''' variables = {} fileparts = filename.split('.') if fileparts[-2]=="tar": #We will be doing compression import tarfile ext = ".csv" if extracompression: ext = ".gz" files,dirname = _writecsvs(filename,dataset,extension=ext,logfile=logfile) namelen = len(filename) with tarfile.open(filename,"w:%s"%fileparts[-1]) as tarball: maxlen = 0 for tfile in files: maxlen = max(maxlen,len(tfile)) for var in files: varname = var if len(varname.split("/"))>2: varname = "/".join(varname.split("/")[-2:]) tarball.add(var,arcname=varname) writeline = "Packing %"+str(maxlen)+"s in %"+str(namelen)+"s" try: _log(logfile,(writeline+" ....... %d timestamps")%(var,filename, dataset[var].shape[0])) except: _log(logfile,writeline%(var,filename)) os.system("rm -rf %s"%dirname) return filename elif fileparts[-1]=="tar": #We're still making a tarball, but it won't be compressed import tarfile ext = ".csv" if extracompression: ext = ".gz" files,dirname = _writecsvs(filename,variables,extension=ext,logfile=logfile) namelen = len(filename) with tarfile.open(filename,"w") as tarball: maxlen = 0 for tfile in files: maxlen = max(maxlen,len(tfile)) for var in files: tarball.add(var) writeline = "Packing %"+str(maxlen)+"s in %"+str(namelen)+"s" try: _log(logfile,(writeline+"\t....... %d timestamps")%(var,filename, dataset[var].shape[0])) except: _log(logfile,writeline%(var,filename)) os.system("rm -rf %s"%dirname) return filename else: #Just a collection of CSV/TXT-type files in a subdirectory, which may be individually-compressed. #These files can have .txt, .csv, or .gz file extensions. files,dirname = _writecsvs(filename,variables,logfile=logfile) return files,dirname def _npsavez(filename,dataset,logfile=None): meta = {} for var in _postmetadata: if var=="spectra" and "images" in dataset: meta[var] = _postmetadata[var][0] elif var=="spectra" and "transits" in dataset: meta[var] = _postmetadata[var][1] else: meta[var] = _postmetadata[var] metafilename = filename[:-4]+"_metadata.npz" np.savez_compressed(metafilename,**meta) np.savez_compressed(filename,**dataset) return metafilename,filename def _netcdf(filename,dataset,logfile=None): import netCDF4 as nc _log(logfile,"Writing petitRADTRANS output to %s."%filename) _log(logfile,"Initializing file and dimensions....") latitude = dataset["lat"] longitude = dataset["lon"] time = dataset["time"] wvls = dataset["wvl"] ntimes = len(time) nwvls = len(wvls) ncd = nc.Dataset(filename, 'w', format="NETCDF4") t0 = 0 t1 = ntimes twoD = True if "images" in dataset: twoD = True _log(logfile,"Direct imaging data detected; writing output with 2D maps") else: #Transit spectra twoD = False _log(logfile,"Transit data detected; writing output with 1D terminator maps") dt = ncd.createDimension("time", ntimes) times = ncd.createVariable("time","f4",("time",), zlib=True, least_significant_digit=6) wvl = ncd.createDimension("wvl", nwvls) wavelengths = ncd.createVariable("wvl","f4",("wvl",), zlib=True, least_significant_digit=6) if twoD: nlats = len(latitude) nlons = len(longitude) lat = ncd.createDimension("lat", nlats) lon = ncd.createDimension("lon", nlons) latitudes = ncd.createVariable("lat","f4",("lat",), zlib=True, least_significant_digit=6) longitudes = ncd.createVariable("lon","f4",("lon",), zlib=True, least_significant_digit=6) nobsv = dataset["colors"].shape[1] - 1 obsv = ncd.createDimension("observer",nobsv) obsvp = ncd.createDimension("observer_plus",nobsv+1) observers = ncd.createVariable("observers","i4",("observer",),zlib=True) observersp= ncd.createVariable("observersp","i4",("observer_plus",),zlib=True) observers.set_auto_mask(False) observersp.set_auto_mask(False) observers.units = "n/a" observersp.units = "n/a" observers.axis = "W" observersp.axis= "W" observers.standard_name = "observer_views" observers.long_name = "observer_view_angles" observersp.standard_name = "lambertian_+_observer_views" observersp.long_name = "lambertian_plus_observer_view_angles" observers[:] = np.arange(nobsv)+1 observersp[:]= np.arange(nobsv+1) rgbdim = ncd.createDimension("RGB",3) rgb = ncd.createVariable("rgb","f4",("RGB",),zlib=True,least_significant_digit=6) rgb.set_auto_mask(False) rgb.units = "n/a" rgb.standard_name = "RGB_max" rgb.long_name = "RGB_max_values" rgb[:] = 1.0 else: ncoords = latitude.shape[1] coord = ncd.createDimension("coord", ncoords) latitudes = ncd.createVariable("lat","f4",("time","coord"), zlib=True, least_significant_digit=6) longitudes = ncd.createVariable("lon","f4",("time","coord"), zlib=True, least_significant_digit=6) ncd.set_auto_mask(False) times.set_auto_mask(False) latitudes.set_auto_mask(False) longitudes.set_auto_mask(False) wavelengths.set_auto_mask(False) times.units = "indices" latitudes.units = "degrees" longitudes.units= "degrees" wavelengths.units="microns" times[:] = time[:].astype("float32") latitudes[:] = latitude[:].astype("float32") longitudes[:] = longitude[:].astype("float32") wavelengths[:] = wvls[:].astype("float32") times.axis = 'T' latitudes.axis = 'Y' longitudes.axis = 'X' wavelengths.axis= 'Z' times.standard_name = "obsv_time_index" latitudes.standard_name = "latitude" longitudes.standard_name = "longitude" wavelengths.standard_name= "wavelength" times.long_name = "obsv_time_index" latitudes.long_name = "latitude" longitudes.long_name = "longitude" wavelengths.long_name= "wavelength" if twoD: _log(logfile,"Writing 2D image data for each observation.....") datavar = dataset["images"] dvarmask = datavar[np.isfinite(datavar)] dvarmask = dvarmask[dvarmask!=0] if len(dvarmask)==0: lsd = None else: lsd = max(int(round(abs(np.log10(abs(dvarmask).min()))+0.5))+6,6) #get decimal place of smallest value if abs(dvarmask).min()>=1.0: lsd=6 images = ncd.createVariable("images","f8",("time","lat","lon","wvl"), zlib=True,least_significant_digit=lsd) images.set_auto_mask(False) images[:] = datavar[:] images.units = "erg cm-2 s-1 Hz-1" images.standard_name = "image_spectra_map" images.long_name = "image_spectra_map" _log(logfile,"Writing 2D true-color data for each observation.....") datavar = dataset["colors"] dvarmask = datavar[np.isfinite(datavar)] dvarmask = dvarmask[dvarmask!=0] photos = ncd.createVariable("colors","f4",("time","observersp","lat","lon","RGB"), zlib=True,least_significant_digit=6) photos.set_auto_mask(False) photos[:] = datavar[:] photos.units = "RGB" photos.standard_name = "true_color_image" photos.long_name = "true_color_image" _log(logfile,"Writing disk-averaged image data for each observation.....") datavar = dataset["spectra"] dvarmask = datavar[np.isfinite(datavar)] dvarmask = dvarmask[dvarmask!=0] if len(dvarmask)==0: lsd = None else: lsd = max(int(round(abs(np.log10(abs(dvarmask).min()))+0.5))+6,6) #get decimal place of smallest value if abs(dvarmask).min()>=1.0: lsd=6 spectra = ncd.createVariable("spectra","f8",("time","observers","wvl"), zlib=True,least_significant_digit=lsd) spectra.set_auto_mask(False) spectra[:] = datavar[:] spectra.units = "erg cm-2 s-1 Hz-1" spectra.standard_name = "image_spectrum_avg" spectra.long_name = "image_spectrum_avg" else: #transits _log(logfile,"Writing a spectrum for each terminator column for each observation.....") datavar = dataset["transits"] dvarmask = datavar[np.isfinite(datavar)] dvarmask = dvarmask[dvarmask!=0] if len(dvarmask)==0: lsd = None else: lsd = max(int(round(abs(np.log10(abs(dvarmask).min()))+0.5))+6,6) #get decimal place of smallest value if abs(dvarmask).min()>=1.0: lsd=6 transits = ncd.createVariable("transits","f8",("time","coord","wvl"), zlib=True,least_significant_digit=lsd) transits.set_auto_mask(False) transits[:] = datavar[:] transits.units = "km" transits.standard_name = "transit_spectra_map" transits.long_name = "transit_spectra_map" _log(logfile,"Recording the angular width of each column in degrees....") weights = ncd.createVariable("weights","f4",("time","coord"), zlib=True,least_significant_digit=6) weights.set_auto_mask(False) weights[:] = dataset["weights"][:] weights.units = "degrees" weights.standard_name = "transit_column_width" weights.long_name = "transit_column_width" _log(logfile,"Writing the terminator-averaged transit spectrum....") datavar = dataset["spectra"] dvarmask = datavar[np.isfinite(datavar)] dvarmask = dvarmask[dvarmask!=0] if len(dvarmask)==0: lsd = None else: lsd = max(int(round(abs(np.log10(abs(dvarmask).min()))+0.5))+6,6) #get decimal place of smallest value if abs(dvarmask).min()>=1.0: lsd=6 spectra = ncd.createVariable("spectra","f8",("time","wvl"), zlib=True,least_significant_digit=lsd) spectra.set_auto_mask(False) spectra[:] = datavar[:] spectra.units = "km" spectra.standard_name = "transit_spectrum_avg" spectra.long_name = "transit_spectrum_avg" _log(logfile,"Write completed; handing off to parent routine.") ncd.sync() return ncd def _hdf5(filename,dataset,logfile=None,append=False): '''foo''' import h5py latitude = dataset["lat"] longitude = dataset["lon"] time = dataset["time"] wvls = dataset["wvl"] _log(logfile,"Writing petitRADTRANS output to %s."%filename) _log(logfile,"Initializing file.....") mode = "w" if append: mode = "a" hdfile = h5py.File(filename,mode) u8t = h5py.string_dtype('utf-8', 32) if "lat" not in hdfile: if "images" in dataset: hdfile.create_dataset("lat",data=latitude[:].astype("float32"),compression='gzip', compression_opts=9,shuffle=True,fletcher32=True) else: hdfile.create_dataset("lat",data=latitude[:].astype("float32"),compression='gzip', maxshape=[None,dataset["lat"].shape[1]],compression_opts=9, shuffle=True,fletcher32=True) hdfile.attrs["lat"] = np.array(["latitude".encode('utf-8') ,"degrees".encode('utf-8')],dtype=u8t) elif "transits" in hdfile: hdfile["lat"].resize(hdfile["lat"].shape[0]+dataset["lat"].shape[0],axis=0) hdfile["lat"][-dataset["lat"].shape[0]:] = dataset["lat"].astype("float32") if "lon" not in hdfile: if "images" in dataset: hdfile.create_dataset("lon",data=longitude[:].astype("float32"),compression='gzip', compression_opts=9,shuffle=True,fletcher32=True) else: hdfile.create_dataset("lon",data=longitude[:].astype("float32"),compression='gzip', maxshape=[None,dataset["lon"].shape[1]],compression_opts=9, shuffle=True,fletcher32=True) hdfile.attrs["lon"] = np.array(["longitude".encode('utf-8') ,"degrees".encode('utf-8')],dtype=u8t) elif "transits" in hdfile: hdfile["lon"].resize(hdfile["lon"].shape[0]+dataset["lon"].shape[0],axis=0) hdfile["lon"][-dataset["lon"].shape[0]:] = dataset["lon"].astype("float32") if "wvl" not in hdfile: hdfile.create_dataset("wvl",data=wvls[:].astype("float32"),compression='gzip', compression_opts=9,shuffle=True,fletcher32=True) hdfile.attrs["wvl"] = np.array(["wavelength".encode('utf-8') ,"microns".encode('utf-8')],dtype=u8t) if "time" not in hdfile: hdfile.create_dataset("time",data=time[:].astype("float32"),compression='gzip', maxshape=(None,),compression_opts=9, shuffle=True,fletcher32=True) hdfile.attrs["time"]= np.array(["obsv_time_index".encode('utf-8'),"indices".encode('utf-8')],dtype=u8t) else: hdfile["time"].resize((hdfile["time"].shape[0]+len(time)),axis=0) hdfile["time"][-len(time):] = time[:] keyvars = list(dataset.keys()) keyvars.remove("lat") keyvars.remove("lon") keyvars.remove("time") keyvars.remove("wvl") _log(logfile,"Packed fixed dimensions into %s\t...."%filename) for var in keyvars: if var not in hdfile: maxshape = [None,] for dim in dataset[var].shape[1:]: maxshape.append(dim) maxshape = tuple(maxshape) hdfile.create_dataset(var,data=dataset[var].astype("float64"),compression='gzip', maxshape=maxshape,compression_opts=9,shuffle=True, fletcher32=True) if "images" in keyvars and var=="spectra": hdfile.attrs[var] = np.array(["image_spectrum_avg".encode('utf-8'), "erg cm-2 s-1 Hz-1".encode('utf-8')],dtype=u8t) elif "transits" in keyvars and var=="spectra": hdfile.attrs[var] = np.array(["transit_spectrum_avg".encode('utf-8'), "km".encode('utf-8')],dtype=u8t) elif var=="images": hdfile.attrs[var] = np.array(["image_spectra_map".encode('utf-8'), "erg cm-2 s-1 Hz-1".encode('utf-8')],dtype=u8t) elif var=="colors": hdfile.attrs[var] = np.array(["true_color_image".encode('utf-8'), "RGB".encode('utf-8')],dtype=u8t) elif var=="albedomap": hdfile.attrs[var] = np.array(["observed_reflectivity".encode('utf-8'), "dimensionless".encode('utf-8')],dtype=u8t) elif var=="transits": hdfile.attrs[var] = np.array(["transit_spectra_map".encode('utf-8'), "km".encode('utf-8')],dtype=u8t) elif var=="weights": hdfile.attrs[var] = np.array(["column_contribution_weights".encode('utf-8'), "degrees".encode('utf-8')],dtype=u8t) else: hdfile[var].resize((hdfile[var].shape[0]+dataset[var].shape[0]),axis=0) hdfile[var][-dataset[var].shape[0]:] = dataset[var].astype("float64") _log(logfile,"Packed %21s in %s\t...... %d timestamps"%(hdfile.attrs[var][0], filename,dataset[var].shape[0])) return hdfile
[docs] def save(filename,dataset,logfile=None,extracompression=False): '''Save petitRADTRANS ExoPlaSim output to a file. Output format is determined by the file extension in filename. Current supported formats are NetCDF (\*.nc), HDF5 (\*.hdf5, \*.he5, \*.h5), numpy's ``np.savez_compressed`` format (\*.npz), and CSV format. If NumPy's single-array .npy extension is used, .npz will be substituted--this is a compressed ZIP archive containing .npy files. Additionally, the CSV output format can be used in compressed form either individually by using the .gz file extension, or collectively via tarballs (compressed or uncompressed). If a tarball format (e.g. \*.tar or \*.tar.gz) is used, output files will be packed into a tarball. gzip (.gz), bzip2 (.bz2), and lzma (.xz) compression types are supported. If a tarball format is not used, then accepted file extensions are .csv, .txt, or .gz. All three will produce a directory named following the filename pattern, with one file per variable in the directory. If the .gz extension is used, NumPy will compress each output file using gzip compression. CSV-type files will only contain 2D variable information, so the first N-1 dimensions will be flattened. The original variable shape is included in the file header (prepended with a # character) as the first items in a comma-separated list, with the first non-dimension item given as the '|||' placeholder. On reading variables from these files, they should be reshaped according to these dimensions. This is true even in tarballs (which contain CSV files). A T21 model output with 10 vertical levels, 12 output times, all supported variables in grid mode,and no standard deviation computation will have the following sizes for each format: +----------------+-----------+ |Format | Size | +================+===========+ |netCDF | 12.8 MiB | +----------------+-----------+ |HDF5 | 17.2 MiB | +----------------+-----------+ |NumPy (default) | 19.3 MiB | +----------------+-----------+ |tar.xz | 33.6 MiB | +----------------+-----------+ |tar.bz2 | 36.8 MiB | +----------------+-----------+ |gzipped | 45.9 MiB | +----------------+-----------+ |uncompressed | 160.2 MiB | +----------------+-----------+ Using the NetCDF (.nc) format requires the netCDF4 python package. Using the HDF5 format (.h5, .hdf5, .he5) requires the h5py python package. Parameters ---------- filename : str Path to the destination output file. The file extension determines the format. Currently, netCDF (\*.nc). numpy compressed (\*.npz), HDF5 (\*.hdf5, \*.he5, \*.h5), or CSV-type (\*.csv, \*.txt, \*.gz, \*.tar, \*.tar.gz, \*.tar.bz2, \*.tar.xz) are supported. If a format (such as npz) that requires that metadata be placed in a separate file is chosen, a second file with a '_metadata' suffix will be created. dataset : dict A dictionary containing the fields that should be written to output. logfile : str or None, optional If None, log diagnostics will get printed to standard output. Otherwise, the log file to which diagnostic output should be written. Returns ------- gcmt._Dataset object Open cross-format dataset object ''' fileparts = filename.split('.') if fileparts[-1] == "nc": ncd = _netcdf(filename,dataset,logfile=logfile) ncd.close() return filename elif fileparts[-1] == "npz" or fileparts[-1] == "npy": meta,fn = _npsavez(filename,dataset,logfile=logfile) return fn elif (fileparts[-1] in ("csv","txt","gz","tar") or \ (fileparts[-2]+"."+fileparts[-1]) in ("tar.gz","tar.bz2","tar.xz")): output = _csv(filename,dataset,logfile=logfile,extracompression=extracompression) return output elif fileparts[-1] in ("hdf5","h5","he5"): hdfile = _hdf5(filename,dataset,logfile=logfile) hdfile.close() return filename else: raise Exception("Unsupported output format detected. Supported formats are:\n\t\n\t%s"%("\n\t".join(pyburn.SUPPORTED)))